ECON 4925 Autumn 2011 Electricity Economics Lecture 3

Lecturer:

Finn R. Førsund

The bathtub diagram

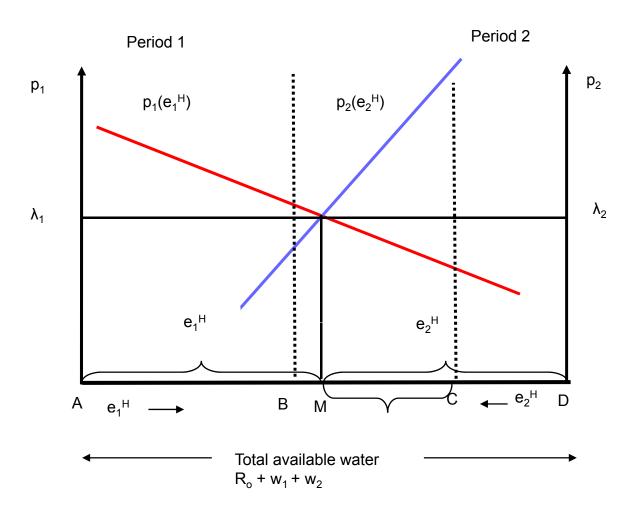
- Only two periods
- Available water in the first period

$$R_o + w_1$$

- Available water in the second period $R_1 + w_2$
- Adding together the two water-storage equations

$$e_1^H + e_2^H = R_o + w_1 + w_2$$

The bathtub diagram for two periods



Explaining price change

- Binding reservoir constraint in period 1
- No overflow due to the non-satiation assumption

$$p_{1}(e_{1}^{H}) = \lambda_{1} (e_{1}^{H} > 0),$$

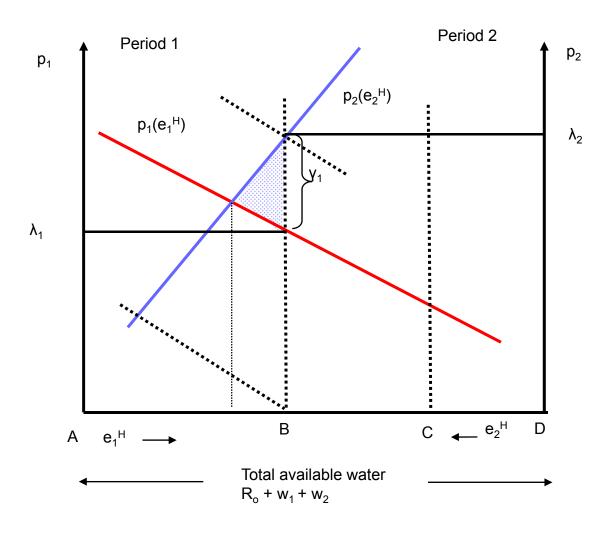
$$-\lambda_{1} + \lambda_{2} - \gamma_{1} \le 0 (= 0 \text{ if } R_{1} > 0)$$

Implication of binding reservoir constraint

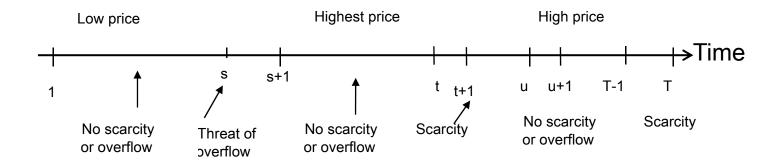
$$R_1 = \overline{R} \Longrightarrow -\lambda_1 + \lambda_2 - \gamma_1 = 0 , \ \gamma_1 \ge 0$$

$$\Longrightarrow \lambda_1 \le \lambda_2 \Longrightarrow p_1 \le p_2$$

Threat of overflow

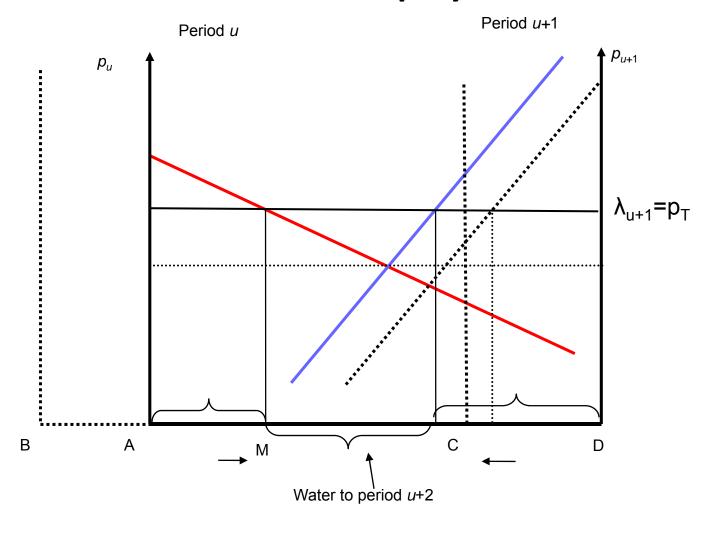


Price-determining events, general case

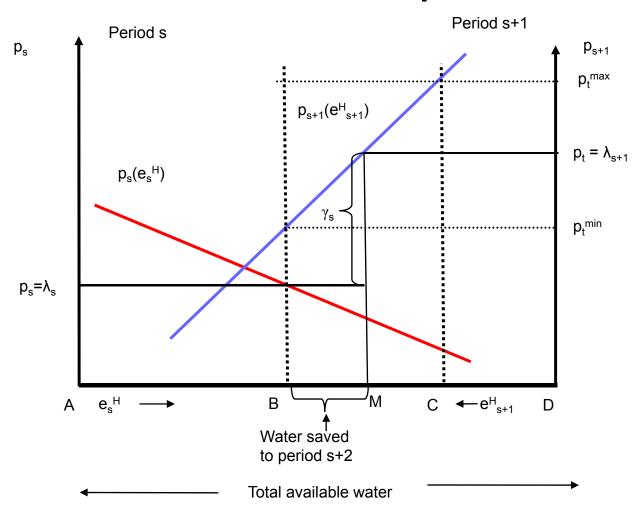


- Price-determining events
 - Scarcity and threat of overflow

In between empty and full



Reservoir full in period s



Hydropower constraints

Variable	Constraint type	Expression
R_t : reservoir at end of t	Max reservoir: \bar{R}_{t}	$R_t \leq \overline{R}_t$
	Environmental concerns, min reservoir: \underline{R}_t	$R_t \geq \underline{R}_t$
e_t^H : hydropower during t	Max power capacity: \overline{e}^H	$e_{t}^{H} \leq \overline{e}^{H}$
	Max transmission capacity: \overline{e}_t^H	$e_t^H \leq \overline{e}_t^H$
r_t : release of water during t	Water flows, environment:	
	$\underline{r}_t = \min, \overline{r}_t = \max$	$\underline{r}_t \le r_t \le \overline{r}_t$
	Environment: ramping up: r_t^u	$r_t - r_{t-1} \le r_t^u$
	ramping down: r_t^d	$r_{t-1} - r_t \le r_t^d$

Production constraint

- A constraint on power (turbines, dimension of pipes)
 - Implies a constraint on energy production

$$e_{t}^{H} \leq \overline{e}^{H}$$

- Constraint independent of period
- A production constraint may become binding when
 - Preventing overflow
 - Trying to satisfy peak demand

The manoeuvrability of the system

- Perfect manoeuvrability:
 - All available water can be produced within the period
- Limited manoeuvrability:
 - Takes more than a period to empty the reservoir
 - Key parameter: the minimum number of periods t^o it takes to empty a full reservoir

$$t^{o} = \min t \text{ such that } t \overline{e}^{H} \geq \overline{R}$$

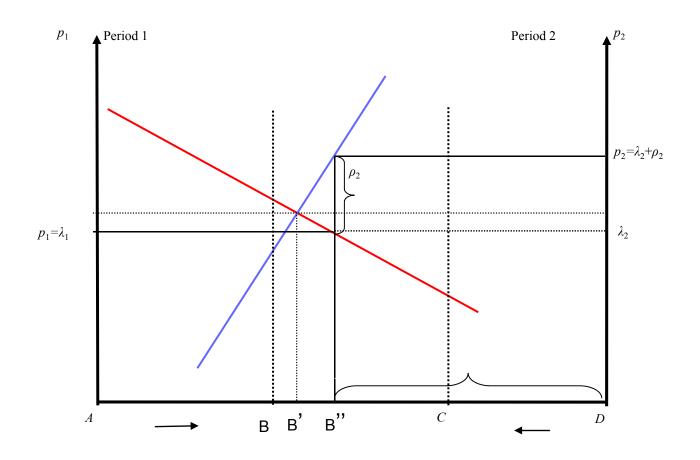
 Manoeuvrability depends on the choice of time period here, but is a real time problem

Locking in of water

- Unavoidable loss of water due to a production constraint
 - Starting with an empty reservoir the inflows are such that even processing maximal water in each period overflow is in the end unavoidable

$$R_{t'} = 0, \sum_{t=t'}^{t''} w_t - (t'' - t' + 1)\overline{e}^H > \overline{R}$$

A bathtub illustration: constraint in period 2: peak demand



Constraints 13

A bathtub illustration: constraint in period 1:threat of overflow

