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PREFACE 

This study is intended as a contribution to econometrics. It repre- 
sents an attempt to supply a theoretical foundation for the analysis of 
interrelations between economic variables. It is based upon modern 
theory of probability and statistical inference. A few words may be said 
to justify such a study. 

The method of econometric research aims, essentially, at a conjunc- 
tion of economic theory and actual measurements, using the theory and 
technique of statistical inference as a bridge pier. But the bridge itself 
was never completely built. So far, the common procedure has been, 
first to construct an economic theory involving exact functional rela- 
tionships, then to compare this theory with some actual measurements, 
and, finally, "to judge" whether the correspondence is "good" or 
"bad." Tools of statistical inference have been introduced, in some 
degree, to support such judgments, e.g., the calculation of a few stand- 
ard errors and multiple-correlation coefficients. The application of such 
simple "statistics" has been considered legitimate, while, at the same 
time, the adoption of definite probability models has been deemed a 
crime in economic research, a violation of the very nature of economic 
data. That is to say, it has been considered legitimate to use some of 
the tools developed in statistical theory without accepting the very 
foundation upon which statistical theory is built. For no tool developed 
in the theory of statistics has any meaning-except, perhaps, for descrip- 
tive purposes-without being referred to some stochastic scheme. 

The reluctance among economists to accept probability models as a 
basis for economic research has, it seems, been founded upon a very 
narrow concept of probability and random variables. Probability 
schemes, it is held, apply only to such phenomena as lottery draw- 
ings, or, at best, to those series of observations where each observation 
may be considered as an independent drawing from one and the same 
"population." From this point of view it has been argued, e.g., that 
most economic time series do not conform well to any probability 
model, "because the successive observations are not independent." But 
it is not necessary that the observations should be independent and 
that they should all follow the same one-dimensional probability law. 
It is sufficient to assume that the whole set of, say n, observations may 
be considered as one observation of n variables (or a "sample point") 
following an n-dimensional joint probability law, the "existence" of 
which may be purely hypothetical. Then, one can test hypotheses re- 
garding this joint probability law, and draw inference as to its possible 
form, by means of one sample point (in n dimensions). Modern statis- 

-*1i- 
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tical theory has made considerable progress in solving such problems 
of statistical inference. 

In fact, if we consider actual economic research-even that carried 
on by people who oppose the use of probability schemes-we find that 
it rests, ultimately, upon some, perhaps very vague, notion of proba- 
bility and random variables. For whenever we apply a theory to facts 
we do not-and we do not expect to-obtain exact agreement. Certain 
discrepancies are classified as "admissible," others as "practically im- 
possible" under the assumptions of the theory. And the principle of 
such classification is itself a theoretical scheme, namely one in which 
the vague expressions "practically impossible" or "almost certain" are 
replaced by "the probability is near to zero," or "the probability is 
near to one." 

This is nothing but a convenient way of expressing opinions about 
real phenomena. But the probability concept has the advantage that it is 
"analytic," we can derive new statements from it by the rules of logic. 
Thus, starting from a purely formal probability model involving certain 
probabilities which themselves may not have any counterparts in real 
life, we may derive such statements as "The probability of A is almost 
equal to 1." Substituting some real phenomenon for A, and transform- 
ing the statement "a probability near to 1" into "we are almost sure 
that A will occur," we have a statement about a real phenomenon, the 
truth of which can be tested. 

The class of scientific statements that can be expressed in proba- 
bility terms is enormous. In fact, this class contains all the "laws" that 
have, so far, been formulated. For such "laws" say no more and no 
less than this: The probability is almost 1 that a certain event will 
occur. 

Thus, there appears to be a two-fold justification for our attempt to 
give a more rigorous, probabilistic, formulation of the problems of eco- 
nomic research: First, if we want to apply statistical inference to testing 
the hypotheses of economic theory, it implies such a formulation of 
economic theories that they represent statistical hypotheses, i.e., state- 
ments-perhaps very broad ones-regarding certain probability dis- 
tributions. The belief that we can make use of statistical inference with- 
out this link can only be based upon lack of precision in formulating the 
problems. Second, as we have indicated above, there is no loss of gen- 
erality in choosing such an approach. We hope to demonstrate that it is 
also convenient and fruitful. 

The general principles of statistical inference introduced in this study 
are based on the Neyman-Pearson theory of testing statistical hy- 
potheses. 

-iv- 



PREFACE 

Chapter I contains a general discussion of the connection between 
abstract models and economic reality. 

Chapter II deals with the question of establishing "constant relation- 
ships" in the field of economics, and with the degree of invariance of 
economic relations with respect to certain changes in structure. 

In Chapter III we discuss the nature of stochastical models and their 
applicability to economic data. 

In Chapter IV it is shown that a hypothetical system of economic 
relations may be transferred into a statement about the joint probability 
law of the economic variables involved, and that, therefore, such a sys- 
tem can be regarded as a statistical hypothesis in the Neyman-Pearson 
sense. A brief expos6 of the Neyman-Pearson theory of testing statis- 
tical hypotheses and estimation is given at the beginning of this chapter. 

Chapter V deals, essentially, with the following problem of estima- 
tion: Given a system of stochastical equations, involving a certain num- 
ber of parameters, such that the system is actually satisfied by economic 
data when a certain set of values of the parameters is chosen, is then the 
system also satisfied for other values of the parameters? If that be the 
case, no unique estimate of the parameters can be obtained from the 
data. (This is, in the case of linear relations, the now well-known prob- 
lem of multicollinearity.) Mathematical rules for investigating such 
situations are given. 

Chapter VI contains a short outline of the problems of predictions. 
Some examples are presented to illustrate essential points. 

* * * 

The idea of undertaking this study developed during my work as an 
assistant to Professor Ragnar Frisch at the Oslo Institute of Economics. 
The reader will recognize many of Frisch's ideas in the following, and 
indirectly his influence can be traced in the formulation of problems 
and the methods of analysis adopted. I am forever grateful for his 
guiding influence and constant encouragement, for his patient teaching, 
and for his interest in my work. 

The analysis, as presented here, was worked out in detail during a 
period of study in the United States, and was first issued in mimeo- 
graphed form at Harvard in 1941. My most sincere thanks are due to 
Professor Abraham Wald of Columbia University for numerous sug- 
gestions and for help on many points in preparing the manuscript.Upon 
his unique knowledge of modern statistical theory and mathematics in 
general I have drawn very heavily. Many of the statistical sections in 
this study have been formulated, and others have been reformulated, 
after discussions with him. The reader will find it particularly useful in 
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connection with the present analysis to study a recent article by 
Professor Wald and Dr. H. B. Mann, "On the Statistical Treatment of 
Linear Stochastic Difference Equations," in ECONOMETRICA, Vol. 11, 
July-October, 1943, pp. 173-220. In that article will be found a more 
explicit statistical treatment of problems that in the present study have 
only been mentioned or dealt with in general terms. 

I should also like to acknowledge my indebtedness to Professor Jacob 
Marschak, research director of the Cowles Commission, for many stim- 
ulating conversations on the subject. I wish further to express my 
gratitude to Professors Joseph A. Schumpeter and Edwin B. Wilson of 
Harvard University for reading parts of the original manuscript, and 
for criticisms which have been utilized in the present formulation. 
Likewise, I am indebted to Mr. Leonid Hurwicz of the Cowles Com- 
mission and to Miss Edith Elbogen of the National Bureau of Economic 
Research for reading the manuscript and for valuable comments. 

Of course, the author alone should be blamed for any mistake or in- 
completeness. 

TRYGVE HAAVELMO 
New York, June, 1944 
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CHAPTER I 

ABSTRACT MODELS AND REALITY 

1. Introduction 

Theoretical models are necessary tools in our attempts to understand 
and "explain" events in real life. In fact, even a simple description and 
classification of real phenomena would probably not be possible or 
feasible without viewing reality through the framework of some scheme 
conceived a priori. 

Within such theoretical models we draw conclusions of the type, "if 
A is true, then B is true." Also, we may decide whether a particular 
statement or a link in the theory is right or wrong, i.e., whether it does 
or does not violate the requirements as to inner consistency of our 
model. As long as we remain in the world of abstractions and simplifi- 
cations there is no limit to what we might choose to prove or to dis- 
prove; or, as Pareto has said, "Il n'y a pas de proposition qu'on ne 
puisse certifier vraie sous certaines conditions, A determiner."I Our 
guard against futile speculations is the requirement that the results of 
our theoretical considerations are, ultimately, to be compared with 
some real phenomena. This, of course, does not mean that every theo- 
retical result, e.g., those of pure mathematics, must have an immediate 
practical application. A good deal of the work in pure theory consists in 
deriving rigorous statements which may not always have a direct bear- 
ing upon facts. They may, however, help to consolidate and expand the 
techniques and tools of analysis and, thus, increase our power of attack- 
ing problems of reality. 

When statements derived from a theoretical model are transferred 
to facts, the question of "right" or "wrong" becomes more ambiguous. 
The facts will usually disagree, in some respects, with any accurate a 
priori statement we derive from a theoretical model. In other words, 
such exact models are simply false in relation to the facts considered. 
Can we have any use for models that imply false statements? It is 
common to answer this question by observing that, since abstract 
models never correspond exactly to facts, we have to be satisfied when 
the discrepancies are not "too large," when there is "a fairly good cor- 
respondence," etc. But on second thought we shall realize that such a 
point of view is not tenable. For we must then, evidently, have a rule 
for deciding in advance when we shall say that our a priori statements 
are right or wrong. That is, such rules will have to be part of our 

I Manuel d'4conomie politique, 2nd ed., p. 9. 
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models. Our models, thus expanded, then lead to somewhat broader 
statements which, when applied to facts, will be either true or false. 

Still, whatever be the theory, it cannot remain true in regard to a 
certain set of facts if it ever implies a false statement about those facts. 
We shall then find that it is practically impossible to maintain any 
theory that implies a nontrivial statement about certain facts, because 
sooner or later the facts will, usually, contradict any such statement. 
Therefore, we shall not only have to be satisfied with broader state- 
ments than the ones usually implied by an "exact" model, but we shall 
also have to adopt a particular kind of model, namely such models 
as permit statements that are not implications, but merely have a cer- 
tain chance of being true. This will lead us to a probabilistic formula- 
tion of theories that are meant to be applied. 

Expressions like "the theory is almost true" simply do not make 
sense unless specified in some such manner as we have indicated. There- 
fore, when we say that an "exact" theory is "almost true" it seems that 
we must mean that this theory, although wrong as its stands, in prac- 
tice can replace another model which, first, would lead us to somewhat 
broader statements and, second, would permit even these broader 
statements to be wrong "on rare occasions." 

Thus, the question of whether or not an exact theoretical model is 
"almost true" is really the same question as whether or not some other 
model that claims less is actually true in relation to the facts, or at 
least does not contradict the facts. It is with models of the latter type 
that we have to concern ourselves when we want to engage in testing 
theories against facts. As already mentioned, we shall see that this leads 
us to adopting a probabilistic formulation of theories to be applied. 

These remarks apply, more or less, to all types of economic theory, 
whether quantitatively formulated or not. But we shall not follow up 
the study of theory versus facts in this broad sense. In all that follows 
we shall be concerned with a particular, but very important, class of 
economic theories, namely those where the theoretical model consists of 
a system of (ordinary or functional) equations between certain eco- 
nomic variables. A few remarks may be made as to the common sense 
of this type of economic theory. 

Broadly speaking, we may classify such quantitative economic rela- 
tions in the three groups: 

I. Definitional identities, 
II. Technical relations, 

III. Relations describing economic action. 
The first group is exemplified by such relations as: Total expenditure= 
price multiplied by quantity bought, total output = output per worker 
times the number of workers, and similar types of "bookkeeping iden- 
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tities." To the second group belong, e.g., technical production func- 
tions, and other natural or institutional restrictions which are usually 
taken as data in economic planning. In the third group we find the 
broad class of relations describing the behavior of individuals or collec- 
tive units in their economic activity, their decisions to produce and 
consume. 

In such relations two sorts of quantities occur, viz., the variables un- 
der investigation, and the parameters introduced in the process of analy- 
sis. (The terms "variables" and "parameters" are relative to the 
particular problem in question, they cannot be defined in any absolute 
sense.) In relations of type I the parameters, if any, are given by defini- 
tion, while in relations of type II or III the parameters are at our 
disposal for the purpose of adapting such hypothetical relations to a 
set of economic variables. From the point of view of economic theory 
this distinction applies in particular to relations of type III; it applies 
perhaps less to those of type II, inasmuch as the choice of form and of 
parameters in technical relations may be regarded as the task of other 
sciences. 

Let us consider in particular the relations of type III. Certainly we 
know that decisions to consume, to invest, etc., depend on a great num- 
ber of factors, many of which cannot be expressed in quantitative 
terms. What is then the point of trying to associate such behavior with 
only a limited set of measurable phenomena, which cannot give more 
than an incomplete picture of the whole "environment" or "atmos- 
phere" in which the economic planning and decisions take place? First 
of all, we should notice that "explanations" of this kind are only at- 
tempted for such phenomena as themselves are of a quantitative nature, 
such as prices, values, and physical volume. And when economic de- 
cisions are of the type "more" or "less," "greater" or "smaller," they 
must have consequences for some other measurable phenomena. Thus, 
if a man starts to spend more of his (fixed) income on a certain com- 
modity, he must spend less on other things. If a manufacturer wants to 
increase his production, he must buy more means of production. If his 
profit increases, this must have measurable consequences for his spend- 
ing-saving policy; and so forth. It would certainly be very artificial to 
assume that these quantities themselves do not influence the decisions 
taken, and that there should be no system in such influences. It is, 
then, only a natura) step to attempt an approximate description of such 
influences by means of certain behavioristic parameters. 

At least this is one type of "explanation." Other types may be chosen. 
But whatever be the "explanations" we prefer, it is not to be forgotten 
that they are all our own artificial inventions in a search for an under- 
standing of real life; they are not hidden truths to be "discovered." 
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2. "Exact Quantitative Definitions of the Economic Variables" 
This phrase has become something like a slogan among modern econ- 

omists, but there sometimes appears to be some confusion as to what 
it actually means. The simple and rational interpretation would seem 
to be that, since the most important facts we want to study in real 
economic life present themselves in the form of numerical measure- 
ments, we shall have to choose our models from that field of logic which 
deals with numbers, i.e., from the field of mathematics. But the con- 
cepts of mathematics obtain their quantitative meaning implicitly 
through the system of logical operations we impose. In pure mathe- 
matics there really is no such problem as quantitative definition of a 
concept per se, without reference to certain operations. 

Therefore, when economists talk about the problem of quantitative 
definitions of economic variables, they must have something in mind 
which has to do with real economic phenomena. More precisely, they 
want to "give exact rules how to measure certain phenomena of real 
life," they want to "know exactly what elements of real life correspond 
to those of theory." When considering a theoretical set-up, involving 
certain variables and certain mathematical relations, it is common to 
ask about the actual meaning of this and that variable. But this ques- 
tion has no sense within a theoretical model. And if the question applies 
to reality it has no precise answer. The answer we might give consists, 
at best, of a tentative description involving words which we have 
learned to associate, more or less vaguely, with certain real phenomena, 

Therefore, it is one thing to build a theoretical model, it is another 
thing to give rules for choosing the facts to which the theoretical model 
is to be applied. It is one thing to choose the theoretical model from the 
field of mathematics, it is another thing to classify and measure objects 
of real life. For the latter we shall always need some willingness among 
our fellow research workers to agree "for practical purposes" on ques- 
tions of definitions. It is never possible-strictly speaking-to avoid 
a,mbiguities in classifications and measurements of real phenomena. Not 
only is our technique of physical measurement unprecise, but in most 
cases we are not even able to give an unambiguous description of the 
method of measurement to be used, nor are we able to give precise rules 
for the choice of things to be measured in connection with a certain 
theory. Take, for instance, the apparently simple question of measuring 
the total consumption of a commodity in a country during a given 
period of time. Difficulties immediately arise from the fact that the 
notions of a "commodity," "consumption," etc., are not precise terms; 
there may be dispute concerning their content or quantitative measure. 
And this applies to all quantities that represent practical measure- 
ments of real objects. 
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3. "Observational," "True," and Theoretical Variables; 
an Important Distinction 

Even though our actual knowledge of economic facts is based on 
rough classifications and approximate measurements, we feel that we 
often "could do better than this," that, in many cases, it would be pos- 
sible to give descriptions and rules of measurement in such a way that 
two or more independent observers applying these rules to a described 
group of objects would obtain practically the same quantities. Often, 
when we operate with such notions as national income, output of cer- 
tain commodities, imports, exports, etc., we feel that these things have 
a definite quantitative meaning and could possibly be measured rather 
accurately, but-for financial reasons or lack of time-we are not able 
to carry out the counting and measurement in the way we should 
really like to do it. And we also usually feel that these problems of 
measurements are somewhat different from those of searching for "ex- 
planations." When we speak of certain known facts to be "explained" 
we think, in many cases, of some more correct or controlled measure- 
ments of facts than those that happen to be given by current economic 
statistics. From experience in various fields we have acquired empirical 
knowledge as to sources of errors and the degree of precision connected 
with current types of statistical observation technique. At least as the 
situation is at present in the field of economic statistics, we almost 
always know that we could do better, if we could only find the 
necessary time and money. When we speak of the "true" values 
of certain observable phenomena, as compared with some approximate 
statistical information, the distinction we have in mind is probably 
something like the one we have described above in somewhat vague 
terms. 

In pure theory we introduce variables (or time functions) which, by 
construction, satisfy certain conditions of inner consistency of a theo- 
retical model. These theoretical variables are usually given names that 
indicate with what actual, "true," measurements we hope the theoreti- 
cal variables might be identified. But the theoretical variables are not 
defined as identical with some "true" variables. For the process of cor- 
rect measurement is, essentially, applied to each variable separately. 
To impose some functional relationship upon the variables means going 
much further. We may express the difference by saying that the "true" 
variables (or time functions) represent our ideal as to accurate measure- 
ments of reality "as it is in fact," while the variables defined in a theory 
are the true measurements that we should make if reality were ac- 
tually in accordance with our theoretical model. 

The distinction between these three types of variables, although 
somewhat vague, is one of great importance for the understanding of 
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the connection between pure theory and its applications. Let us try to 
explain the matter in a different way that is, perhaps, clearer. 

One of the most characteristic features of modern economic theory 
is the extensive use of symbols, formulae, equations, and other mathe- 
matical notions. Modern articles and books on economics are "full of 
mathematics." Many economists consider "mathematical economics" 
as a separate branch of economics. The question suggests itself as to 
what the difference is between "mathematical economics" and "mathe- 
matics." Does a system of equations, say, become less mathematical 
and more economic in character just by calling x "consumption," y 
"price," etc.? There are certainly many examples of studies to be found 
that do not go very much further than this, as far as economic signifi- 
ance is concerned. But they hardly deserve the ranking of contributions 
to economics. What makes a piece of mathematical economics not only 
mathematics but also economics is, I believe, this: When we set up a 
system of theoretical relationships and use economic names for the 
otherwise purely theoretical variables involved, we have in mind some 
actual experiment, or some design of an experiment, which we could at 
least imagine arranging, in order to measure those quantities in real 
economic life that we think might obey the laws imposed on their 
theoretical namesakes. For example, in the theory of choice we intro- 
duce the notion of indifference surfaces, to show how an individual, 
at given prices, would distribute his fixed income over the various com- 
modities. This sounds like "economics" but is actually only a formal 
mathematical scheme, until we add a design of experiments that would 
indicate, first, what real phenomena are to be identified with the theo- 
retical prices, quantities, and income; second, what is to be meant by 
an "individual"; and, third, how we should arrange to observe the in- 
dividual actually making his choice. 

There are many indications that economists nearly always have some 
such design of ideal experiments in the back of their minds when they 
build their theoretical models. For instance, there is hardly an econo- 
mist who feels really happy about identifying current series of "national 
income," "consumption," etc., with the variables by these names in 
his theories. Or, conversely, he would often find it too complicated or 
perhaps even uninteresting to try to build models such that the ob- 
servations he would like to identify with the corresponding theoretical 
variables would correspond to those actually given by current economic 
statistics. In the verbal description of his model, "in economic terms," 
the economist usually suggests, explicitly or implicitly, some type of 
experiments or controlled measurements designed to obtain the real 
variables for which he thinks that his model would hold. That is, he 
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has in mind some "true" variables that he would like to measure. The 
data he actually obtains are, first of all, nearly always blurred by some 
plain errors of measurements, that is, by certain extra "facts" which he 
did not intend to "explain" by his theory. Secondly, and that is still 
more important, the economist is usually a rather passive observer 
with respect to important economic phenomena; he usually does not 
control the actual collection of economic statistics. He is not in a posi- 
tion to enforce the prescriptions of his own designs of ideal experiments. 

One could perhaps also characterize the difference between the "true" 
and the "observational" variables in the following way. The "true" 
variables are variables such that, if their behavior should contradict a 
theory, the theory would be rejected as false; while "observational" 
variables, when contradicting the theory, leave the possibility that we 
might be trying out the theory on facts for which the theory was not 
meant to hold, the confusion being caused by the use of the same names 
for quantities that are actually different. 

In order to test a theory against facts, or to use it for predictions, 
either the statistical observations available have to be "corrected," or 
the theory itself has to be adjusted, so as to make the facts we consider 
the "true" variables relevant to the theory, as described above. To use 
a mechanical illustration, suppose we should like to verify the law of 
falling bodies (in vacuum), and suppose our measurements for that 
purpose consisted of a series of observations of a stone (say) dropped 
through the air from various levels above the ground. To use such data 
we should at least have to calculate the extra effect of the air resistance 
and extract this element from the data. Or, what amounts to the same, 
we should have to expand the simple theory of bodies falling in vacuum, 
to allow for the air resistance (and probably many other factors). A 
physicist would dismiss these measurements as absurd for such a pur- 
pose because he can easily do much better. The economist, on the other 
hand, often has to be satisfied with rough and biased measurements. 
It is often his task to dig out the measurements he needs from data 
that were collected for some other purpose; or, he is presented with 
some results which, so to speak, Nature has produced in all their com- 
plexity, his task being to build models that explain what has been 
observed. 

The practical conclusion of the discussion above is advice that 
economists hardly ever fail to give, but that few actually follow, viz., 
that one should study very carefully the actual series considered and 
the conditions under which they were produced, before identifying 
them with the variables of a particular theoretical model. (We shall 
discuss these problems further in Chapter II.) 
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4. Theoretical Models, Hypotheses, and Facts 

Let x1', x2', * * *, xn', be n real variables, and let (xl/, x2', * , x"% 
or, for short, (x'), denote any particular set of values of these variables. 
Any such set may be represented by a point in n-dimensional Cartesian 
space. Let S be the set of all such points, and let "A" be a system of 
rules or operations which defines a subset SA of S. (SA might, for ex- 
ample, be a certain n-dimensional surface.) The rules "A" ascribe to 
each point (x') a property, viz., the property of belonging to SA or not 
belonging to SA. If we allow the n variables x' to vary only under the 
condition that (x') must belong to SA, this forms a theoretical model 
for what the variables x' can do. 

Similarly, consider n time functions xi'(t), x2'(t), ... *, xn'(t). Let F 
be the set of all possible systems of n time functions, and let "B" be a 
system of rules or operations that defines a subclass FB of F. Any sys- 
tem of n time functions will then have the property of either belonging 
to FB or not belonging to FB. The system of rules "B" defines a model 
with respect to n time series. 

Thus, a theoretical model may be said to be simply a restriction upon 
the joint variations of a system of variable quantities (or, more gen- 
erally, "objects") which otherwise might have any value or property. 
More generally, the restrictions imposed might not absolutely exclude 
any value of the quantities considered; it might merely give different 
weights (or probabilities) to the various sets of possible values of the 
variable quantities. The model in question would then usually be char- 
acterized by the fact that it defines certain restricted subsets of the set 
of all possible values of the quantities, such that these subsets have 
nearly all of the total weight. 

A theoretical model in this sense is, as it stands, void of any practical 
meaning or interest. And this situation is, as we have previously ex- 
plained, not changed by merely introducing "economic names" for the 
variable quantities or objects involved. The model attains economic 
meaning only after a corresponding system of quantities or objects in 
real economic life has been chosen or described, in order to be identified 
with those in the model. That is, the model will have an economic mean- 
ing only when associated with a design of actual experiments that de- 
scribes-and indicates how to measure-a system of "true" variables 
(or objects) xl, x2, , xn that are to be identified with the corre- 
sponding variables in the theory. 

As a consequence of such identification all the permissible statements 
that can be made within the model with respect to the theoretical 
variables or objects involved are automatically made also with respect 
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to the actual, "true" variables. The model thereby becomes an a priori 
hypothesis about real phenomena, stating that every system of values 
that we might observe of the "true" variables will be one that belongs 
to the set of value-systems that is admissible within the model. The 
idea behind this is, one could say, that Nature has a way of selecting 
joint value-systems of the "true" variables such that these systems are 
as if the selection had been made by the rule defining our theoretical 
model. Hypotheses in the above sense are thus the joint implications- 
and the only testable implications, as far as observations are concerned 
-of a theory and a design of experiments. It is then natural to adopt 
the convention that a theory is called true or false according as the 
hypotheses implied are true or false, when tested against the data 
chosen as the "true" variables. Then we may speak, interchangeably, 
about testing hypotheses or testing theories. 

If a certain set of value-systems of the variables is excluded in the 
model then any one system of observed values that falls into this ex- 
cluded set would be sufficient to reject the hypothesis (and, therefore, 
the theory) as false with respect to the "true" variables considered. But 
as we have mentioned, the model may be (and we believe that to be 
practical it has to be) such that it does not exclude any system of values 
of the variables, but merely gives different weights or probabilities to 
the various value-systems. These weights then need a practical inter- 
pretation in order that the model shall express a meaningful hypothesis 
with respect to the corresponding "true" variables. According to ex- 
perience it has very often been found fruitful to interpret such weights 
as a measure of actual "frequency of occurrence." If the total weight 
ascribed to all the possible value-systems is finite, we can then say that 
the practical meaning of a set of value-systems that has a weight almost 
equal to zero according to the model is a hypothesis saying that Nature 
has a way of selecting joint value-systems of the corresponding "true" 
variables that makes it "practically impossible" that a system of ob- 
served values should fall within such a set. For the purpose of testing 
the theory against some other alternative theories we might then agree 
to deem the hypothesis tested false whenever we observe a certain 
number of such "almost impossible" value-systems. That is, at the risk 
of making an error, we should then prefer to adopt another hypothesis 
under which the observations made are not of the "almost impossible" 
type. 

If we have found a certain hypothesis, and, therefore, the model be- 
hind it, acceptable on the basis of a certain number of observations, we 
may decide to use the theory for the purpose of predictions. If, after a 
while, we find that we are not very successful with these predictions, 
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we should be inclined to doubt the validity of the hypothesis adopted 
(and, therefore, the usefulness of the theory behind it). We should then 
test it again on the basis of the extended set of observations. 

It has been found fruitful to introduce a special calculus for deriving 
such types of hypotheses. This is the calculus of probability. Later on 
we shall study at length the common sense of applying this calculus for 
the derivation of hypotheses about economic phenomena. 

Now suppose that we have a set of observations that all confirm the 
statements that are permissible within our model. Then these state- 
ments become facts interpreted in the light of our theoretical model, or, 
in other words, our model is acceptable so far as the known observations 
are concerned. But will the model hold also for future observations? 
We cannot give any a priori reason for such a supposition. We can 
only say that, according to a vast record of actual experiences, it seems 
to have been fruitful to believe in the possibility of such empirical in- 
ductions. 

* * * 

In the light of the above analysis we may now classify, roughly, the 
main problems that confront us in scientific quantitative research. 
They are: 

1. The construction of tentative models. It is almost impossible, it 
seems, to describe exactly how a scientist goes about constructing a 
model. It is a creative process, an art, operating with rationalized no- 
tions of some real phenomena and of the mechanism by which they are 
produced. The whole idea of such models rests upon a belief, already 
backed by a vast amount of experience in many fields, in the existence 
of certain elements of invariance in a relation between real phenomena, 
provided we succeed in bringing together the right ones. 

2. The testing of theories, which is the problem of deciding, on the 
basis of data, whether to maintain and use a certain theory or to dis- 
miss it in exchange for another. 

3. The problem of estimation, which, in the broadest sense, is the 
problem of splitting, on the basis of data, all a priori possible theories 
about certain variables into two groups, one containing the admissible 
theories, the other containing those that must be rejected. 

4. The problem of predictions. 
The problems 2, 3, and 4 are closely bound to a probabilistic formula- 

tion of hypotheses, and much confusion has been caused by attempts to 
deal with them otherwise. In a probabilistic formulation they can all be 
precisely defined, and much of the confusion in current economic re- 
search can then be cleared away. These problems will be the subjects 
of Chapters IV, V, and VI. 
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Many economists would, however, consider the problems 2-4 as de- 
tails. Their principal concern is in a sense a more fundamental one, 
namely the question of whether we might have any hope at all of con- 
structing rational models that will contribute anything to our under- 
standing of real economic life. In the next chapter we shall try to 
clarify some of the main arguments and points in this discussion. 



CHAPTER II 

THE DEGREE OF PERMANENCE OF ECONOMIC LAWS 

If we compare the historic developments of various branches of 
quantitative sciences, we notice a striking similarity in the paths they 
have followed. Their origin is Man's craving for "explanations" of 
"curious happenings," the observations of such happenings being more 
or less accidental or, at any rate, of a very passive character. On the 
basis of such-perhaps very vague-recognition of facts, people build 
up some primitive explanations, usually of a metaphysical type. Then, 
some more "cold-blooded" empiricists come along. They want to "know 
the facts." They observe, measure, and 'classify, and, while doing so, 
they cannot fail to recognize the possibility of establishing a certain 
order, a certain system in the behavior of real phenomena. And so they 
try to construct systems of relationships to copy reality as they see it 
from the point of view of a careful, but still passive, observer. As they 
go on collecting better and better observations, they see that their 
"copy" of reality needs "repair." And, successively, their schemes grow 
into labyrinths of "extra assumptions" and "special cases," the whole 
apparatus becoming more and more difficult to manage. Some clearing 
work is needed, and the key to such clearing is found in a priori reason- 
ing, leading to the introduction of some very general-and often very 
simple-principles and relationships, from which whole classes of appar- 
ently very different things may be deduced. In the natural sciences 
this last step has provided much more powerful tools of analysis than 
the purely empirical listing of cases. 

We might be inclined to say that the possibility of such fruitful 
hypothetical constructions and deductions depends upon two separate 
factors, namely, on the one hand, the fact that there are laws of Nature, 
on the other hand, the efficiency of our analytical tools. However, by 
closer inspection we see that such a distinction is a dubious one. Indeed, 
we can hardly describe such a thing as a law of nature without referring 
to certain principles of analysis. And the phrase, "In the natural sci- 
ences we have stable laws," means not much more and not much less 
than this: The natural sciences have chosen very fruitful ways of look- 
ing upon physical reality. So also, a phrase such as "In economic life 
there are no constant laws," is not only too pessimistic, it also seems 
meaningless. At any rate, it cannot be tested. But we may discuss 
whether the relationships that follow from our present scheme of eco- 
nomic theory are such that they apply to facts of real economic life. 
We may discuss problems which arise in attempting to make compari- 
sons between reality and our present set-up of economic theory. We 

-12- 



THE DEGREE OF PERMANENCE OF ECONOMIC LAWS 13 

may try to find a rational explanation for the fact that relatively few 
attempts to establish economic "laws" have been successful. I think 
that considerable effort should first be spent on clarifying these re- 
stricted problems. 

In the following we propose to deal with some of the fundamenital 
problems that arise in judging the degree of persistence over time of 
relations between economic variables. For the sake of simplicity we 
shall often operate here with the notion of "exact" rather than "sto- 
chastical" relationships. We can do this because the main points to be 
discussed do not seem to be principally related to the particular type 
of relations that we might hope to establish. The problems to be dis- 
cussed are more directly connected with the general question of whether 
or not we might hope to find elements of invariance in economic life, 
upon which to establish permanent "laws." 

5. What Do We Mean by a "Constant Relationship"? 

When we use the terms "constant relationships," or "unstable, 
changing relationships," we obviously refer to the behavior of some 
real economic phenomena, as compared with some behavior that we 
expect from theoretical considerations. The notion of constancy or 
permanence of a relationship is, therefore, not one of pure theory. It 
is a property of real phenomena as we look upon them from the point of 
view of a particular theory. More precisely, let xi', X2', , xn, be n 
theoretical variables, restricted by an equation 

(5.1) f(xl', X2', - * * , Xn'; 01 a, X2, .* * * Xa -) = 8 X 

where the a's are constants, and where s' is a shift possessing certain 
specified properties. (5.1) does not become an economic theory just 
by using economic terminology to name the variables involved. (5.1) 
becomes an economic theory when associated with a rule of actual 
measurement of n economic variables, x1, x2, , x.,X to be compared 
with x1', X2', * X,,', respectively. The essential feature of such a rule 
of measurement is that it does not a priori impose the restriction (5.1) 
upon the variables to be measured. If we did that, we should fall back 
into the world of abstract theory, because one of the variables would 
follow from the measurement of the n-1 others and the properties 
assigned to s'. The rule of measurement is essentially a technical device 
of measuring each variable separately. It is a design of actual experiments, 
to obtain the "true" variables as described in Section 3. 

All value-sets of the n theoretical variables x' in (5.1) have a common 
property, namely the property of satisfying that equation. We are in- 
terested in whether or not the "true" variables xi, x2, * * , xn, have the 
same property. Let (x1, x2, ... ,x ,) be any one of the results obtain- 
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able by our design of experiments, and let s be a variable defined 
implicitly by 

(5.2) f(xI, X22 * * Xn; all a2, a *Xk) = 

where f is the same as in (5.1). If then s has the same properties as s' 
in (5.1) whatever be the system of experimentally observed values of 
X1, X2, * , x", we say that the observable "true" variables xi follow 
a constant law. 

Therefore, given a theoretical relation, a design of experiments, and 
a set of observations, the problem of constancy or invariance of an 
economic relation comes down to the following two questions: 

(1) Have we actually observed what we meant to observe, i.e., can 
the given set of observations be considered as a result obtained by 
following our design of "ideal" experiments? 

(2) Do the "true" variables actually have the properties of the theo- 
retical variables? 

A design of experiments (a prescription of what the physicists call 
a "crucial experiment") is an essential appendix to any quantitative 
theory. And we usually have some such experiments in mind when we 
construct the theories, although-unfortunately-most economists do 
not describe their designs of experiments explicitly. If they did, they 
would see that the experiments they have in mind may be grouped into 
two different classes, namely, (1) experiments that we should like to 
make to see if certain real economic phenomena-when artificially iso- 
lated from "other influences"-would verify certain hypotheses, and 
(2) the stream of experiments that Nature is steadily turning out from 
her own enormous laboratory, and which we merely watch as passive 
observers. In both cases the aim of theory is the same, namely, to be- 
come master of the happenings of real life. But our approach is a little 
different in the two cases. 

In the first case we can make the agreement or disagreement between 
theory and facts depend upon two things: the facts we choose to con- 
sider, as well as our theory about them. As Bertrand Russell has said: 
"The actual procedure of science consists of an alternation of observa- 
tion, hypothesis, experiment, and theory."' 

In the second case we can only try to adjust our theories to reality 
as it appears before us. And what is the meaning of a design of experi- 
ments in this case? It is this: We try to choose a theory and a design of 
experiments to go with it, in such a way that the resulting data would be 
those which we get by passive observation of reality. And to the extent 

1 The Analysis of Matter, New York, 1927, p. 194. 
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that we succeed in doing so, we become master of reality-by passive 
agreement. 

Now, if we examine current economic theories, we see that a great 
many of them, in particular the more profound ones, require experi- 
ments of the first type mentioned above. On the other hand, the kind 
of economic data that we actually have belong mostly to the second 
type. In economics we use a relatively small vocabulary to describe an 
enormous variety of phenomena (and sometimes economists use differ- 
ent names for the same phenomenon). The result is that many different 
things pass under the same name, and that, therefore, we are in danger 
of considering them as identical. And thus, theories are often being 
compared with data which cannot at all be considered as observations 
obtained by following the design of experiment we had in mind when 
constructing the theory. Of course, when a theory does not agree with 
the facts we can always say that we do not have the right kind of data. 
But this is an empty phrase, unless we can describe, at the same time, 
what would be the right kind of data, and how to obtain them, at least 
in point of principle. If every theory should be accompanied by a care- 
fully described design of experiments, much confusion on the subject 
of constant versus changing economic "laws" would be cleared up. 

This description of the problem of stability or permanence of eco- 
nomic relations is a very broad one. It may give a preliminary answer 
to very superficial critics of the possibility of developing economics as 
a science. But it does not answer the many profound problems of de- 
tails which confront us when we really try to investigate why econom- 
ics, so far, has not led to very accurate and universal laws like those 
obtaining in the natural sciences. 

Let us first once more look upon the general argument: "There are 
no constant laws describing phenomena of economic life." Above we 
said that this argument was meaningless. We shall support this state- 
ment a little further. It is not possible to give any precise answer to the 
argument, because it does not itself represent a precise question. But 
let us try to understand what the argument means. Suppose, first, we 
should consider the "class of all designs of experiments," the results of 
which "we should be interested in as economists." Here, of course, we 
get into difficulty immediately, because it is probably not possible to 
define such a class. We do not know all the experiments we might be 
interested in. Consider, on the other hand, the class of all possible eco- 
nomic theories (of the type we are discussing here). By each design of 
experiments there is defined a sequence of actual measurements. Con- 
sider, for each such measurement, the subclass of theories with which 
the measurement agrees. For a sequence of measurements we get a 
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sequence of such subclasses of theories. Now, if these classes of theories 
did not have any nontrivial property in common, we might say that 
the measurements obtained by the design of experiments used do not 
follow any law. But does this statement really say anything? Obviously, 
very little. Because it is a statement about classes of things which are 
completely undefined. No matter how much we try and fail, we should 
never be able to establish such a conclusion as "In economic life there 
are no constant laws." 

We shall consider a much more restricted problem, namely this: How 
far do the hypothetical "laws" of economic theory in its present stage 
apply to such data as we get by passive observations? By passive ob- 
servations we mean observable results of what individuals, firms, etc., 
actually do in the course of events, not what they might do, or what 
they think they would do under certain other specified circumstances. 
It would be superficial to consider this problem merely as a question of 
whether our present economic theory is good or bad; or, rather, that is 
not a fruitful setting of the problem. We have to start out by analyzing 
what we are actually trying to achieve by economic theory. We have to 
compare its designs of idealized experiments with those which would 
be required to reproduce the phenomena of real economic life that we 
observe passively. 

In such a discussion we soon discover that we have to deal with a 
manifold of different questions. Let us try to review the most important 
ones: 

(a) Are most of the theories we construct in "rational economics" 
ones for which historical data and passive observations are not ade- 
quate experiments? This question is connected with the following: 

(b) Do we try to construct theories describing what individuals, 
firms, etc., actually do in the course of events, or do we construct theo- 
ries describing schedules of alternatives at a given moment? If the lat- 
ter is the case, what bearing do such schedules of alternatives have upon 
a series of decisions and actions actually carried out? 

(c) Why do we not confine ourselves only to such theories as are di- 
rectly verifiable? Or, why are we interested in relations for which Na- 
ture does not furnish experiments? 

(d) Very often our theories are such that we think certain directly 
observable series would give adequate experimental results for a verifi- 
cation, provided other things did not change. What bearing may such 
theories have upon reality, if we simply neglect the influences of these 
"other things"? This, again, is connected with the following problem: 

(e) Are we interested in describing what actually does happen, or are 
we interested in what would happen if we could keep "other things" 
unchanged? In the first case we construct theories for which we hope 
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Nature itself will take care of the necessary ceteris paribus conditions, 
knowing, e.g., that this has been approximately so in the past. In the 
second case we try to take care of the ceteris paribus conditions our- 
selves, by statistical devices of clearing the data from influences not 
taken account of in the theory (e.g., by multiple-correlation analysis). 

(f) From experience with correlation of time series we know that it 
is often possible to establish very close relationships between economic 
variables for some particular time period, while the relationships break 
down for the next time period. Does this fact mean that we cannot hope 
to establish constant laws of economic life? 

These questions, being taken more or less directly out of current dis- 
cussions on problems of economic research, are, as can be seen, hope- 
lessly overlapping; nor does any one of them form a precise analytical 
problem. We, therefore, ask: Can these problems be covered, at least 
partly, by analysis of a set of simplified and more disjunct problems? 
In the following we shall try to do so by studying three different groups 
of problems, which we may call, for short, 

I. The reversibility of economic relations, 
II. The question of simplicity in the formulation of economic laws, 

III. The autonomy of an economic relation. 

6. The Reversibility of Economic Relations 

In the field of economic research the application of relations of pure 
theory to time series or historic records has become something like 
taboo. Many economists, not sufficiently trained in statistical theory, 
have, it seems, been "scared away" by such critical work as, e.g., that 
of G. U. Yule.2 They have come to think that there is something in- 
herent in economic time series as such, which make these data unfit 
for application of pure economic theory. The general argument is some- 
thing like this: In economic theory we operate with hypothetical sched- 
ules of decisions, which individuals, firms, etc., may take in response 
to certain alternatively fixed conditions (e.g., adaptation of quantity 
consumed to a given price change). But economic time series showing 
actual results of decisions taken are only historic descriptions of a 
one-way journey through a sequence of ever-shifting "environments," 
so that it is not possible to make actual predictions by means of the 
schedules of alternatives given by pure economic theory. 

In trying to analyze this problem more precisely, we notice first that 
the general argument above does not deny the possibility that relations 
deduced from economic theory may prove very persistent and accurate 

2 E.g., "Why Do We Sometimes Get Nonsense-correlations between Time 
Series?" Journal of the Royal Statistical Society, Vol. 89, 1926, pp. 1-64. 
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when applied to facts. The argument implies only that the types of 
data represented by economic time series are not those which would re- 
sult from the designs of experiments prescribed in economic theory. 
Here we should, first of all, think of the difficulties that arise from 
the fact that series of passive observations are influenced by a great 
many factors not accounted for in theory; in other words, the difficulties 
of fulfilling the condition "Other things being equal." But this is a 
problem common to all practical observations and measurements; it is, 
in point of principle, not a particular defect of economic time series. 
If we cannot clear the data of such "other influences," we have to try 
to introduce these influences in the theory, in order to bring about more 
agreement between theory and facts. Also, it might be that the data, 
as given by economic time series, are restricted by a whole system of 
relations, such that the series do not display enough variations to verify 
each relation separately. These problems we shall discuss at length in 
the next two sections. Again, there is the problem of errors of measure- 
ments proper. But this problem also is a general one, and not one pecu- 
liar to economic time series. 

If these difficulties are put aside, is there still some property peculiar 
to economic time series that makes them unfit for the application 
of relations deduced from pure economic theory? Even by a careful 
inspection it is difficult to see what such a property could be, because, 
if we can construct any general laws at all, describing what individuals 
actually do, and if we have a series of observations of what the individ- 
uals actually have done in the past, then, necessarily, the theoretical 
law would fit these observation series. If, therefore, we see here a 
problem at all, I think it arises, mostly, from a confusion of two differ- 
ent kinds of relations occurring in economic theory, namely (1) those 
intended to describe what the individuals actually do at any time, and 
(2) those describing a schedule of alternatives at a given moment, before 
any particular decision has been taken. Relations of the first type are, 
usually, derived from a system of relations of the second type. To make 
the discussion on this point more concrete we shall consider a simple 
example of consumers' demand for a single commodity. 

Suppose that an individual consumes n different commodities, and 
let xi, x2, ..., x1 denote quantities of these n commodities. And let 
Pi, P2, * * , Pn be their corresponding prices. Assume that the individ- 
ual has constant money income. According to the general theory of con- 
sumers' choice, we may write 

(6.1) Xi = fi(P p2, *Xp.) (i = 1 2, ... , n), 

where f, are some demand functions. Assume now that all prices, except 
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one, say pi, are constant, and consider the corresponding quantity, xi, 
of commodity No. 1. We may then write 

(6.2) xl = f(pi). 

What does this function mean, under the assumptions made above? It 
may mean two different things. 

One interpretation is that, whenever pi has a particular value, say pi', 
the individual chooses to buy a quantity xl'=f(pl') of commodity 
No. 1. 

Another interpretation is this: Suppose that the individual is in a 
position where he pays the price pl and consumes a quantity x10. He 
considers in that position the possible changes in his consumption of 
commodity No. 1 that he would choose in response to various changes 
in the price from p'0. If the price be changed from pl? to pi', say, he will 
buy xl'=f(pl'); if the price be changed from pl0 to pi" say, he will buy 
xi" =f(pl"); and so forth. That is to say, he has a schedule of alterna- 
tives with respect to the next price change as judged from his present 
position (x10, p,0). To indicate that his schedule may depend upon his 
present position, we might write 

(6.3) xl = fo(pl), 

where f? satisfies x10 =f0(plo). 
It is clear that these two types of demand schedules are of different 

nature, and, furthermore, that the first one claims more than the sec- 
ond one. For the first one requires the assumption that there is a unique 
relation between consumption and prices according to which the indi- 
vidual acts irrespective of the position he happens to be in at the mo- 
ment the decision has to be taken. The second only says that the 
individual has a schedule of alternatives with respect to the next price 
change, as judged from his present position (xl0, p10). After he has taken 
a decision in response to a price change, so that he no longer is in the 
position (xl0, p10), he might change his schedule of alternatives, because 
from the new position he might "see things differently." 

If the individual has a fixed demand schedule that is independent 
of the point on it where he is at any given moment [i.e., a schedule of 
type (6.2) ], then, of course, a historical record of prices and correspond- 
ing quantities consumed would represent points on this demand sched- 
ule, and we could use it for predicting the consumption for any given 
value of the price (under the assumption, as before, that other prices 
did not change). On the other hand, if the demand schedule depends 
upon the actual position of the individual, there might, for each such 
actual position, be a perfectly well-defined schedule of alternatives, 
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which, if we knew it, would allow us to predict the quantity that would 
be bought if the price were changed from pil to pi', say. But as soon as 
the new position (pi', xi') is actually reached, we might need another 
schedule, f' say, to predict the quantity bought if the price were 
changed from pi' to pi", say. The two situations are illustrated graph- 
ically in Figures 1 and 2. 

P, XI 

FIGURE 1.-Reversible Demand FIGURE 2.-" Milieu"-affected De- 
Schedule. mand Schedule. Irreversible Demand 

Process. 

In Figure 2 a historical record of the actual positions (pi0, xi'), 
(pi', xi'), etc., would not form points on any fixed demand curve. And 
if we should fit some curve through these points of actual positions, 
such a curve could not be used for predicting the effect of the next price 
change. To find the demand schedule of the individual at a given mo- 
ment we should have to interview him, asking him what he would do 
if the price were changed alternatively by certain amounts. 

We might consider Figure 1 as a static scheme, while Figure 2 repre- 
sents a dynamic one, because in Figure 1 the sequence of price changes 
is irrelevant, while in Figure 2 it is essential. However, we do not here 
emphasize so much the time succession of the price-quantity changes 
as the fact that the actual carrying out of a planned decision may bring 
the individual into a new "milieu," so to speak, where he feels differ- 
ently from the way that he thought he would feel before he got there. 

If, actually, a set-up like that in Figure 2 is nearer to reality than 
that in Figure 1, then, naturally, an attempt to use the scheme in Fig- 
ure 1 would fail. On the other hand, if the theory operates with 
"milieu"-bound schedules like those in Figure 2, then historical records 
of actual price-quantity combinations are simply not the data that are 
relevant to the theory. 

An irreversible scheme like that in Figure 2 may often be reduced to 
a reversible one by introducing more variables. We might, e.g., assume 
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that the demand schedules in Figure 2 change in a regular manner with 
the initial positions with which they are associated. Let the variables 
xJ, pi be the quantity and price that represent actual positions of the 
individual, and let (xi, pi) be any point on the demand schedule through 
(xl, pi). It might be that the individual's behavior could be described 
by a relation of the type 

(6.4) xi = F(pb, xl, pI), 

where F is such that 

(6.4') xl = F(fi1, Xl, p). 

This function would then be compatible with the time series for actual 
prices and quantities consumed. More specifically, each pair of suc- 
cessive points representing actual positions would satisfy (6.4); i.e., if 
(0, pl?) and (xi', pi') be two such successive points, we should have 

(6.5) x1'=F(fil', x10, P1?). 

We could then determine the parameters of F from the actual time se- 
ries, and then, by (6.4), we could calculate the demand schedule for any 
given initial point (xl, Pi). 

This scheme would probably be too simple. In general we should 
probably have to introduce as variables, not only the instantaneous 
position of the individual, but also the whole sequence of past posi- 
tions, as well as the lengths of the time intervals between the price 
changes. And the situation would, of course, be still more complicated 
when all the other prices also varied. This was excluded in our discus- 
sion above. Whether or not it be actually possible in this way to fit 
historical records into schemes of reversible relationships is a question 
which cannot be answered a priori. We have to try to find out. 

Beside difficulties of the type discussed above, which seem-in point 
of principle-very simple and clear ones, I do not see that economic 
time series have any other "mystic" property that makes them in- 
compatible with economic theory. 

7. The Question of Simplicity in the Formulation of Economic Laws 

Let y denote an economic variable, the observed values of which may 
be considered as results of planned economic decisions taken by in- 
dividuals, firms, etc. (e.g., y might be the annual consumption of a 
certain commodity within a certain group of individuals, or the annual 
amount they save out of their income, etc.; or, it might be the rate of 
production in a monopolized industry, or monthly imports of a certain 
raw material, etc., etc.). And let us start from the assumption that the 
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variable y, is influenced by a number of causal factors. This viewpoint 
is something that is deeply rooted in our way of reasoning about the 
things we observe in reality. We do not need to take the notions of 
cause and effect in any metaphysical sense. What we mean is simply 
that the individuals, firms, etc., are bound in their planning and de- 
cisions by a set of conditions that are data in the process of adaptation. 
Within the limits of these given conditions the adaptation process 
consists in choosing what is deemed the "best" decision, in some sense 
or another. And we assume that the individuals have a system of prefer- 
ence schedules which determine "best decisions" corresponding to any 
given set of choice-limiting conditions. We, therefore, have the follow- 
ing scheme: 

Given conditions System of "Best decision" 
(7.1) (the independent , preference (the dependent[. 

variables) s chedules variables) 

If the system of preference schedules establishes a correspondence 
between sets of given conditions and "best decisions," such that for 
each set of conditions there is one and only one best decision, we may 
"jump over" the middle link in (7.1), and say that the decisions of in- 
dividuals, firms, or groups, are determined by the system of given choice- 
limiting conditions (the independent variables). 

In point of principle there may, perhaps, appear to be some logical 
difficulties involved in operating with such one-way, or causal relation- 
ships. In fact, modern economists have stressed very much the neces- 
sity of operating with relations of the mutual-dependence type, rather 
than relations of the cause-effect type. However, both types of rela- 
tions have, I think, their place in economic theory; and, moreover, they 
are not necessarily opposed to each other, because a system of relations 
of the mutual-dependence type for the economy as a whole may be 
built up from open systems of causal relations within the various sectors 
of the economy. The causal factors (or the "independent variables") 
for one section of the economy may, themselves, be dependent variables 
in another section, while here the dependent variables from the first 
section enter as independent variables. The essential thing is that, 
while for the economy as a whole everything depends upon everything 
else, so to speak, there are, for each individual, firm, or group, certain 
factors which this individual, firm, or group considers as data. The no- 
tion of causal factors is of a relative character, rather than an absolute 
one. 

Let us, therefore, accept the point of view that decisions to produce, 
to consume, to save, etc., are influenced by a number of quantitatively 
defined relative causal factors xl, X2, * . Our hope in economic theory 
and research is that it may be possible to establish constant and rela- 
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tively simple relations between dependent variables, y (of the type 
described above), and a relatively small number of independent vari- 
ables, x. In other words, we hope that, for each variable, y, to be "ex- 
plained," there is a relatively small number of explaining factors the 
variations of which are practically decisive in determining the varia- 
tions of y. (The problem of simplicity of the form of a relationship is 
usually far less important than that of the number of variables in- 
volved, because, if we know there is a functional relationship at all, 
it is, usually, possible to approximate it, e.g., by expanding the function 
in series.) 

Whether or not such simple relations can be established must be de- 
cided by actual trials. A priori it can neither be shown to be possible 
nor proved impossible. But we may do something else, which may give 
us some hint as to how optimistic or pessimistic we have reason to be: 
we can try to indicate what would have to be the actual situation in 
order that there should be no hope of establishing simple and stable 
causal relations. 

First of all, it is necessary to define what we mean by the "influence" 
of an economic factor. This expression, as used in the economic litera- 
ture, seems to have several different meanings. We shall distinguish 
between two different notions of "influence," which we shall call po- 
tential influence, and factual influence respectively. We shall first define 
these two concepts in a purely formal way. 

Let y' be a theoretical variable defined as a function of n independent 
"causal" variables xi, X2, * , x", e.g., 

(7.2) y = f(xl, X2, - - *, X.), 

where f is defined within a certain domain of the variables x. The poten- 
tial influence of the factor x, upon y' we shall define as A,y' given by 

(7.3) Aiy' = f[xl, X2, * , (xi + Ax,), * * * A x,] - f(xl, X2, * n) 

where Ax, is a positive magnitude such that xi+Ax, is within the do- 
main of definition of f. It is clear that this quantity Aiy' will, in general, 
depend upon the variables x as well as upon the value of Axi. And, fur- 
thermore, what we shall mean by a large or a small Ax, depends, of 
course, upon the units of measurement of the variables x. To compare 
the size of the influence of each of the variables x we have, for any point 
(xl, x2, . x.X), to choose a set of displacements Ax,, Ax2, . . . ,Ax, 
which are considered to be of equal size according to some standard of 
judgment. (E.g., one particular such standard would be to define the 
increments Axi at any point in the space of the variables x as constant 
and equal percentages of xi, x2, * , x, respectively.) For a given sys- 
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tem of displacements Ax,, Ax2, * , Ax,,, the potential influences are, 
clearly, formal properties of the function f. 

Now, let us define the notion of factual influence of xi upon y'. In 
contrast to the potential influence, the factual influence refers to a set 
of values of y' corresponding to a set of value systems of the variables 
xl, X2, * * x., chosen according to some outside principle. Let 

YlI, Xll, X21, . ' Xnl, 

(7.4) Y2', X12, X22, * * Xn2, 

YN , X1N, X2N, * * XnN, 

be a set of N such value systems. By the factual influence of xi upon y' 
within this set of value systems we mean, broadly speaking, the parts of 
Yi', I2, * *, YN that may be ascribed to the variations in xi. This 
could be defined quantitatively in various ways. One way would be the 
following: Let us replace the variable xi in (7.2) by a constant, ci say, 
so determined that 

N 

Qi = Ej[f(xly, x2j, ..., xI, * * , X,j) 

(7.5) 1 
-Jf(Xlj, X2j, .. * * C$, .. * * XJ]2 

= minimum with respect to ci, 

assuming that such a minimum exists. The factual influence upon y' of 
the variable xi in the system (7.4) could then, for example, be defined 
as: Constant VQ.(min.). 

From the definitions above it is clear that the potential influence of 
a factor may be large, while-at the same time-the factual influence 
of this factor in a particular set of data may be zero or very small. And, 
conversely, the factual influences may be very large even if the po- 
tential influence is small (but not identically zero). 

This distinction is fundamental. For, if we are trying to explain a 
certain observable variable, y, by a system of causal factors, there is, 
in general, no limit to the number of such factors that might have a 
potential influence upon y. But Nature may limit the number of factors 
that have a nonnegligible factual influence to a relatively small number. 
Our hope for simple laws in economics rests upon the assumption that 
we may proceed as if such natural limitations of the number of relevant 
factors exist. We shall now discuss this a little more closely. 
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Suppose that, out of a-possibly infinite-number of factors 
xl, X2, ** *, with a potential influence upon y, we pick out a rela- 
tively small number, say xi, x2, . ., x,n and consider a certain function 

(7.6) y* = U(x1, x2, * * * , xn) 

of these variables. Suppose that, if all the other factors, Xn+i, X,t+2, . * 

(assuming them to be denumerable) did not vary, we should have y-y* 
for every observed value-set (y, xl, X2, ..., x n). Would the knowledge 
of such a relationship help us to "explain" the actual, observed values 
of y? It would, provided the factual influence of all the unspecified 
factors together were very small as compared with the factual influence 
of the specified factors x1, x2, ..., x n. This might be the case even if 
(1) the unspecified factors varied considerably, provided their potential 
influence was very small, or if (2) the potential influences of the un- 
specified factors were considerable, but at the same time these factors 
did not change much, or did so only very seldom as compared with the 
specified factors. 

On the other hand, suppose that all the factors xi, x2, ..** X, 

x.+,, - * *, or at least a very large number of them, were of the following 
type: (1) Each factor x has a considerable potential influence upon y; 
(2) each x varies usually very little, but occasionally some great varia- 
tions occur. Since there are a great many factors x, we might then still 
have great variations going on almost all the time, in one factor or the 
other. To pick out a small number of factors x, assuming the rest to be 
constant, would then be of very little help in "explaining" the actual 
variations observed for y, i.e., relations of the form (7.6) would show 
very little persistence over time if y were substituted for y*, simply 
because the ceteris paribus conditions, xn+1 = constant, Xn+2 =constant, 
etc., would be no approximation to reality. From the point of view of 
"explaining" reality, we might then say that it would be practically 
impossible to construct a theory such that its associated design of ex- 
periments would approximate that followed by Nature. From the point 
of view of verifying certain simplified relations of theory we might say 
that, under the situation just described, it would be impossible to find 
data for such a purpose by the method of passive observation. 

What is the actual situation as we know it from experience in eco- 
nomic research? Do we actually need to consider an enormous number 
of factors to "explain" decisions to produce, to consume, etc.? I think 
our experience is rather to the contrary. Whenever we try, a priori, to 
specify what we should think to be "important factors," our imagina- 
tion is usually exhausted rather quickly; and when we attempt to apply 
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our theory to actual data (e.g., by using certain regression methods), 
we often find that even a great many of the factors in our a priori list 
turn out to have practically no factual influence. 

Frequently, our greatest difficulty in economic research does not lie 
in establishing simple relations between actual observation series, but 
rather in the fact that the observable relations, over certain time inter- 
vals, appear to be still simpler than we expect them to be from theory, 
so that we are thereby led to throw away elements of a theory that would 
be sufficient to explain apparent "breaks in structure" later. This is the 
problem of autonomy of economic relations, which we now shall discuss. 

8. The Autonomy of an Economic Relation 

Every research worker in the field of economics has, probably, had 
the following experience: When we try to apply relations established 
by economic theory to actually observed series for the variables in- 
volved, we frequently find that the theoretical relations are "unneces- 
sarily complicated"; we can do well with fewer variables than assumed 
a priori. But we also know that, when we try to make predictions by 
such simplified relations for a new set of data, the relations often break 
down, i.e., there appears to be a break in the structure of the data. For 
the new set of data we might also find a simple relation, but a different 
one. Even if no such breaks appear, we are puzzled by this unexpected 
simplicity, because, from our theoretical considerations we have the 
feeling that economic life is capable of producing variations of a much 
more general type. Sometimes, of course, this situation may be ex- 
plained directly by the fact that we have included in our theory factors 
which have no potential influence upon the variables to be explained. 
But more frequently, I think, the puzzle is a result of confusing two 
different kinds of variations of economic variables, namely hypothetical, 
free variations, and variations which are restricted by a system of simul- 
taneous relations. 

We see this difference best by considering the rational operations by 
which a theoretical system of relations is constructed. Such systems 
represent attempts to reconstruct, in a simplified way, the mechanisms 
which we think lie behind the phenomena we observe in the real world. 
In trying to rebuild these mechanisms we consider one relationship at 
a time. 

Suppose, e.g., we are considering n theoretical variables 
x1', x2', , x, , to be compared with n observational variables 
X1, X2, .., x", respectively. We impose certain relations between 
the n theoretical variables, of such a type that we think the theo- 
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retical variables, so restricted, will show some correspondence with the 
observed variables. 

Let us consider one such particular relation, say xl'=f(x2', X,') 
In constructing such a relation, we reason in the following way: If x2' 
be such and such, X3' such and such, etc., then this implies a certain 
value of x1'. In this process we do not question whether these "ifs" can 
actually occur or not. When we impose more relations upon the vari- 
ables, a great many of these "ifs," which were possible for the relation 
xl' =f separately, may be impossible, because they violate the other 
relations. After having imposed a whole system of relations, there may 
not be very much left of all the hypothetical variation with which we 
started out. At the same time, if we have made a lucky choice of theo- 
retical relations, it may be that the possible variations that are left 
over agree well with those of the observed variables. 

But why do we start out with much more general variations than 
those we finally need? For example, suppose that the Walrasian system 
of general-equilibrium relations were a true picture of reality; what 
would be gained by operating with this general system, as compared 
with the simple statement that each of the quantities involved is equal 
to a constant? The gain is this: In setting up the different general rela- 
tions we conceive of a wider set of possibilities that might correspond to 
reality, were it ruled by one of the relations only. The simultaneous 
system of relations gives us an explanation of the fact that, out of this 
enormous set of possibilities, only one very particular one actually 
emerges. But once this is established, could we not then forget about 
the whole process, and keep to the much simpler picture that is the 
actual one? Here is where the problem of autonomy of an economic rela- 
tion comes in. The meaning of this notion, and its importance, can, I 
think, be rather well illustrated by the following mechanical analogy: 

If we should make a series of speed tests with an automobile, driving 
on a flat, dry road, we might be able to establish a very accurate func- 
tional relationship between the pressure on the gas throttle (or the 
distance of the gas pedal from the bottom of the car) and the corre- 
sponding maximum speed of the car. And the knowledge of this rela- 
tionship might be sufficient to operate the car at a prescribed speed. 
But if a man did not know anything about automobiles, and he wanted 
to understand how they work, we should not advise him to spend time 
and effort in measuring a relationship like that. Why? Because (1) such 
a relation leaves the whole inner mechanism of a car in complete mys- 
tery, and (2) such a relation might break down at any time, as soon as 
there is some disorder or change in any working part of the car. (Com- 
pare this, e.g., with the well-known lag-relations between the Harvard 
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A-B-C-curves.) We say that such a relation has very little autonomy,3 
because its existence depends upon the simultaneous fulfilment of a 
great many other relations, some of which are of a transitory nature. 
On the other hand, the general laws of thermodynamics, the dynamics 
of friction, etc., etc., are highly autonomous relations with respect to 
the automobile mechanism, because these relations describe the func- 
tioning of some parts of the mechanism irrespective of what happens 
in some other parts. 

Let us turn from this analogy to the mechanisms of economic life. 
Economic theory builds on the assumption that individuals' decisions 
to produce and to consume can be described by certain fundamental 
behavioristic relations, and that, besides, there are certain technical 
and institutional restrictions upon the freedom of choice (such as tech- 
nical production functions, legal restrictions, etc.). 

A particular system of such relationships defines one particular theo- 
retical structure of the economy; that is to say, it defines a theoretical 
set of possible simultaneous sets of value or sets of time series for the 
economic variables. It might be necessary-and that is the task of 
economic theory-to consider various alternatives to such systems of 
relationships, that is, various alternative structures that might, ap- 
proximately, correspond to economic reality at any time. For the "real 
structure" might, and usually does, change in various respects. 

To make this idea more precise, suppose that it be possible to define 
a class, Q, of structures, such that one member or another of this class 
would, approximately, describe economic reality in any practically con- 
ceivable situation. And suppose that we define some nonnegative measure 
of the "size" (or of the "importance" or "credibility") of any subclass, 
X in Q, including Q itself, such that, if a subclass contains completely 
another subclass, the measure of the former is greater than, or at 
least equal to, that of the latter, and such that the measure of Q is 
positive. Now consider a particular subclass (of Q), containing all 
those-and only those-structures that satisfy a particular relation 
"A." Let WA be this particular subclass. (E.g., WA might be the sub- 
class of all those structures that satisfy a particular demand func- 
tion "A.") We then say that the relation "A" is autonomous with 
respect to the subclass of structures (OA. And we say that "A" has a 

3This term, together with many ideas to the analysis in the present section, 
I have taken from a mimeographed paper by Ragnar Frisch: "Statistical versus 
Theoretical Relations in Economic Macro-Dynamics" (Mimeographed memo- 
randum prepared for the Business Cycle Conference at Cambridge, England, 
July 18-20, 1938, to discuss J. Tinbergen's publication of 1938 for the League of 
Nations.) 
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degree of autonomy which is the greater the larger be the "size" of WA 

as compared with that of Q. 
The principal task of economic theory is to establish such relations 

as might be expected to possess as high a degree of autonomy as possible. 
Any relation that is derived by combining two or more relations 

within a system, we call a confluent relation. Such a confluent relation 
has, of course, usually a lower degree of autonomy (and never a higher 
one) than each of the relations from which it was derived, and all the 
more so the greater the number of different relations upon which it 
depends. From a system of relations, with a certain degree of autonomy, 
we may derive an infinity of systems of confluent relations. How can 
we actually distinguish between the "original" system and a derived 
system of confluent relations? That is not a problem of mathematical 
independence or the like; more generally, it is not a problem of pure 
logic, but a problem of actually knowing something about real phe- 
nomena, and of making realistic assumptions about them. In trying 
to establish relations with high degree of autonomy we take into con- 
sideration various changes in the economic structure which might up- 
set our relations, we try to dig down to such relationships as actually 
might be expected to have a great degree of invariance with respect to 
certain changes in structure that are "reasonable." 

It is obvious that the autonomy of a relation is a highly relative con- 
cept, in the sense that any system of hypothetical relations between 
real phenomena might itself be deducible from another, still more basic 
system, i.e., a system with still higher degree of autonomy with respect 
to structural changes. 

The construction of systems of autonomous relations is, therefore, a 
matter of intuition and factual knowledge; it is an art. 

What is the connection between the degree of autonomy of a relation 
and its observable degree of constancy or persistence? 

If we should take constancy or persistence to mean simply invariance 
with respect to certain hypothetical changes in structure, then the de- 
gree of constancy and the degree of autonomy would simply be two 
different names for the same property of an economic relation. But if 
we consider the constancy of a relation as a property of the behavior of 
actual observations, then there is clearly a difference between the two 
properties, because then the degree of autonomy refers to a class of 
hypothetical variations in structure, for which the relation would be in- 
variant, while its actual persistence depends upon what variations ac- 
tually occur. On the other hand, if we always try to form such relations 
as are autonomous with respect to those changes that are in fact most 
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likely to occur, and if we succeed in doing so, then, of course, there will 
be a very close connection between actual persistence and theoretical 
degree of autonomy. To bring out these ideas a little more clearly we 
shall consider a purely formal set-up. 

Suppose we have an economic system, the mechanism of which 
might be characterized by the variations of n measurable quantities 
x1, X2, ... *, xn. Suppose that the structure of this mechanism could be 
described by a system of m <n equations, 

(8.1) fi(xl, x2,) , xn) = 0 (i = 1, 2,. ,m). 

(n - m) of the variables-let them be xm+1, Xm+2, * , xw--are assumed 
to be given from outside. From the system (8.1) it might, e.g., be pos- 
sible to express each of the first m variables uniquely in terms of the 
n-m remaining ones. Let such a solution be 

Xj = Ui (Xm+li Xm+2, . * Xn). 

X2 = U2 (Xm+1, Xm+22 .. ** Xn), 

(8.2) 
. . . . . . . . . . . . 

Xm = Um(Xm+l Xm+22 .. * Xn), 

The system (8.2) would describe the covariations of the variables just 
as well as would the original system (8.1). But suppose now that there 
should be a change in structure of the following type: One of the func- 
tions fi in (8.1), say fl, is replaced by another function, say fl', while all 
the other relations in (8.1) remain unchanged. In general, this would 
change the whole system (8.2), and if we did not change the system 
(8.2) [e.g., because we did not know the original system (8.1)], some 
or all of its relations would show lack of constancy with respect to the 
observations that would result from the new structure. On the other 
hand, the last mr-1 equations in (8.1) would-by definition-still hold 
good, unaffected by the structural change. It might be that, as a matter 
of fact, one or two particular equations in (8.1) would break down very 
often, while the others remained valid. Then any system (8.2) corre- 
sponding to a fixed system (8.1) would show little persistence with re- 
spect to the actual observations. 

In this scheme the variables xm+i, Xm+2, * , x,,, were, in point of 
principle, free: they might move in any arbitrary way. This includes 
also the possibility that, e.g., all these free variables might move as 
certain well-defined functions of time, e.g., 
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Xm+1 = gi(t)X 

(8.3) Xm+2 92(t), 

Xn g-9nm (t) . 

As long as this should hold, we might be able to express the variables 
Xl, X2, . . *, xm, as functions of xm+l, Xm+2, ... *, x, in many different 
ways. For example, it might be possible to express xi as a function of 
x", say 

(8.4) xi = F(xn). 

But could this relation be used to judge the effect upon xi of various 
arbitrary changes in x,n? Obviously not, because the very existence of 
(8.4) rests upon the assumption that (8.3) holds. The relation (8.4) 
might be highly unstable for such arbitrary changes, and the eventual 
persistence observed for (8.4) in the past when (8.3) held good, would 
not mean anything in this new situation. In the next situation the origi- 
nal system (8.1), or even system (8.2), would still be good, if we knew 
it. But to find such a basic system of highly autonomous relations in an 
actual case is not an analytical process, it is a task of making fruitful 
hypotheses as to how reality actually is. 

We shall illustrate these points by two examples. 
First we shall consider a scheme which, I think, has some bearing 

upon the problem of deriving demand curves from time series. 
Let x be the rate of per capita consumption of a commodity in a 

group of people who all have equal money income, R. Let p be the price 
of the commodity, and let P be an index of cost of living. Assume that 
the following demand function is actually true: 

P R 
(8.5) x = ap + b + c + e, 

P P 

where a, b, c, are certain constants, and e is a random variable'with 
"rather small" variance, and such that the expected values of x are 

(8.6) E x p )=a p + b + c. 

Assume that (8.5) is autonomous in the following sense: For any arbi- 
trary values of p/P and RIP, the corresponding value of x can be 
estimated by (8.6). Suppose we are interested only in variations that 
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are small relative to certain constant levels of the variables. Then we 
may approximate (8.5) by a linear relation in the following way: Let 
po, Ro, and Po be the average values of p, R, and P respectively. Then 
we have 

po + (p-po) Ro + (R-Ro) 
x=a -- +b - + c+ e 

Po + (P-Po) Po + (P-PO) 

po + (p-po) 1 

Po P-Po 
1 + 

Ro + (R-Ro) 1 
+ b-- 1+p _P + c + P 

(8.5') 

po + (P-Po) - Po 

Po POl 

Ro + (R-Ro) (1- P oPo) 

a apO apo a(p - po)(P - Po) 
P po2 pP2 

b bRo bRo b(R-Ro)(P-Po) 
+ R - - P+ - -- - + c+ e. 

Po P02 P0 p02 

If the deviations (p-po), (P-PO), and (R-Ro) are small compared 
with po, Po, and Ro, we may neglect product terms of these deviations. 
Then we obtain 

(8.7) x = Ap + BR + CP + D +e', 

where 

a b lapo bRo) apo bRo 

Po PO 02 p02/ P0 PO 

and where E' is a new residual term now also containing the errors made 
by the above approximation. For small variations of the variables, 
et may not be practically distinguishable from e. 
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What we shall now show is that, if the data for p, P, and R, to be 
used for deriving the demand function have, for some reason or another, 
happened to move as certain regular functions of time, there may in 
these data exist another relation which has exactly the same form as 
(8.7), but different coefficients, and which may fit the data still better 
than (8.7) would do in general. And if we mistake this other relation 
for (8.7), we get merely a confluent relationship, and not an approxima- 
tion to the demand function (8.5). 

To see this let us write (8.5) as 

p(t) R(t) 
(8.5") x(t) =a + b + c + 

P(t) P(t) 

Assume now that the time functions p(t), P(t), and R(t)-for some rea- 
son-happen to be such that they satisfy the functional relations 

(8.8) p(t) = kip(t) + k2P(t) + ko, 

(8.9) R(t) - miR(t) + m2P(t) + MO, 
P(t) 

where the k's and the m's are certain constants. A wide class of elemen- 
tary time functions satisfy such functional equations. And whenever 
this is the case for the actual observations of p, P, and R, an equation 
of the form (8.7) could be fitted to the data. But we could not use the 
equation thus obtained for predicting the effect of an arbitrary price 
change, or an arbitrary income change, because this equation is not in 
general an approximation to (8.5) but merely a confluent result of 
(8.5), (8.8), and (8.9). It, therefore, does not hold, e.g., for price changes 
which violate (8.8), (8.9), or both. 

In general, we have to be very careful in using a particular set of 
data to modify the form of relationships which we have arrived at on 
strong theoretical grounds. For example, in the case above we might be 
led to conclude that (8.7) might be a more correct "form" of the de- 
mand function than (8.5), or at least as good, while actually, when (8.8) 
and (8.9) are fulfilled, we may obtain a relationship of the form (8.7), 
which is not a demand function at all, and which breaks down as soon 
as p(t), P(t), and R(t) take on some other time shape. 

As an illustration to the question of autonomy of an economic rela- 
tion with respect to a change in economic policy, let us consider the eco- 
nomic model underlying the famous Wicksellian theory of interest rates 
and commodity prices. (For the sake of simplicity and shortness we 
shall, however, make somewhat more restrictive assumptions than 
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Wicksell himself did. Our model does not do full justice to Wicksell's 
profound ideas.) 

Consider a society where there are only three different economic 
groups: (a) individuals, (b) private firms, and (c) banks. We assume 
that: (1) All individuals divide their income into two parts, one part 
consisting of spending+increase in cashholding, the other part being 
saved, and all savings go into banks as (time) deposits. There is no 
other saving in the society. (2) All production in the society takes place 
in firms. The firms are impersonal organizations, guided in their produc- 
tion policy by profit expectations only. They can make new investments 
by means of bank loans only. They distribute all their profit to in- 
dividuals. (3) Prices of goods and services of all kinds vary proportion- 
ally through time, and may be represented by a common variable, 
called the price level. (4) The banks have the power of expanding or 
contracting credit. We assume that there is only one money rate of 
interest, which is the same for all banks and the same for loans as for 
deposits. (This gives a rough description of the model we are going to 
discuss. It is hardly possible to give an exhaustive description of a 
model in words. The precise description is given implicitly through the 
relations imposed in the model.) 

We are principally interested in the price effect of certain changes 
in the credit policy of the banks. 

Let us introduce the following notations: 

(1) S(t) =total saving per unit of time, 
(2) I(t) =total investment per unit of time, 
(3) p(t) =bank rate of interest at point of time t, 
(4) P(t) =price level at point of time t, 
(5) R(t) =total national income per unit of time. 

Now we shall introduce a system of fundamental relations describing 
the mechanism of our model. We consider linear relations, for sim- 
plicity. 

First, we assume that there exists a market supply function for sav- 
ings of the following form. 

(8.10) S(t) = ao + alp(t) + a2P(t) + asP(t) + aJR(t). 

This equation says that the supply of savings (bank deposits)-apart 
from a constant-depends upon the rate of interest, the total income, 
the price level, and the expectations regarding the future real value of 
money saved, as represented by the rate of change in the price level 
p(t). It might be realistic to assume that a, and a4 are positive, a2 and a3 
negative. 
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Next, we assume the following demand function for bank loans: 

(8.11) I(t) bo + bip(t) + b2P(t) + b3P(t), 

where bi is negative and b3 positive, while the sign of b2 may be uncer- 
tain, a priori. b3 would be positive because, when the price level is in- 
creasing, the firms expect to buy factors of production in a less expen- 
sive market than that in which they later sell the finished products, and 
this profit element is an inducement to invest. 

Now, if the banks should lend to firms an amount equal to deposits, 
neither more nor less, i.e., if 

(8.12) I(t) = S(t) 

then it follows from (8.10), (8.11), and (8.12), that to each value of 
R(t), P(t), and 15(t), there would correspond a certain market equilib- 
rium rate of interest, p(t), called by Wicksell the normal rate. That is, 
we should have 

bo -ao b2- a2 bs- . a4 
p(t) = + P(t) + P(t) - R(t) 

= Ao + A,P(t) + A2P(t) + A3R(t), 

where p(t) is a value of p(t) satisfying (8.10), (8.11), and (8.12), and 
where the A's are abbreviated notations for the coefficients in the mid- 
dle term. 

If the banks want, actively, to expand or contract currency (that is, 
if they want to change that amount of money outside the banks), they 
have to fix a rate of interest p(t), which differs from p(t) as defined by 
(8.13). [Note that p(t) is by no means a constant over time.] From 
(8.10) and (8.11) we get 

8.14) I(t) -S(t) = (bo - ao) + (b- aj)p(t) + (b2- a2)P(t) 

+ (b3 - a3)P(t)- a4R(t), 

which, for p (t) = p(t), reduces to 

(8.15) ?0 (bo - ao) + (b- aj)p(t) + (b2 -a2)P(t) 

+ (b3 - a3)P(t)- a4R(t). 

Subtracting (8.15) from (8.14) we obtain 

(8.16) I(t) - S(t) = (b - a,) [p(t) -(t) 

which tells us that the amount of "money inflation," I(t)-S(t), is 
(negatively) proportional to the difference between the actual bank rate 
of interest and the normal rate as defined by (8.13). 
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Assuming the "inflation" stream I(t) - S(t) (taken as a barometer 
for total spending) to be accompanied by a proportional rise in the 
price level, we have 

(8.17) P(t) = k [I (t) -S(t)] (k a positive constant). 

Combining (8.16) and (8.17) we obtain 

(8.18) P(t) = k(b, - a,)[p(t) -(t) 

which is a simplified expression for Wicksell's fundamental theorem 
about the price effect of a bank rate of interest that differs from the 
normal rate. 

Accepting this theory (we are not interested in analyzing its actual 
validity any further in this connection, as we use it merely for illus- 
tration), what would be the degree of autonomy of the three equations 
(8.16), (8.17), and (8.18)? 

Let us first consider the equation (8.16). Its validity in our set-up 
rests upon the two fundamental relations (8.10) and (8.11). In setting 
up these two equations we did not impose any restrictions upon the 
time shape of the functions p(t), P(t), and R(t). Therefore, by hypothe- 
sis, whatever be the time shape of these functions, the corresponding 
time shapes of I(t) and S(t)-and, therefore, also the time shape of 
I(t)-S(t)-follow from (8.10) and (8.11). [(8.16) is merely another 
way of calculating the difference I(t)-S(t).] From (8.13) it follows 
that to each pair of time functions P(t) [provided its derivative P(t) 
exists] and R(t) there corresponds a time function p(t), while to each 
given time function p(t) there corresponds, in general, an infinity of time 
functions P(t) and R(t). The equation (8.16) is, therefore-by assump- 
tion-autonomous in the following sense: For any arbitrarily chosen 
time functions for p(t) and p(t) the credit inflation I(t) -S(t) can be 
calculated from (8.16). 

We should notice that this property of (8.16)-if true-is not a 
mathematical property of the equation: it cannot be found by looking 
at the equation. It rests upon a hypothesis as to how the difference 
I(t) -S(t) in fact would behave for various arbitrary changes in the 
interest rate and the normal rate. In another model we might obtain 
an equation of exactly the same form, but without the same property 
of autonomy. For example, assume that-as a consequence of some 
model, whatever be the particular economic reasoning underlying it- 
all the time functions above were bound to follow certain linear trends. 
In particular, suppose that we had I(t) -S(t) = mt, p(t) - p(t) = nt. We 
should then have 

(8.19) I(t) - S(t) =-[p(t) -(t) 
n 



THE DEGREE OF PERMANENCE OF ECONOMIC LAWS 37 

which is of the form (8.16). But from (8.19) we could not calculate the 
effect upon I(t) - S(t) of, say, various types of interest policy, because 
any changes in p(t) that would violate the condition p(t)-p(t)=nt 
would break up the very foundation upon which (8.19) rests. The equa- 
tion (8.19) might still hold after such a break, but that would have to 
follow from another model. 

The equation (8.17) represents, per se, also an autonomous relation 
with respect to certain changes in structure. It is an independent hy- 
pothesis about the price level, saying that, whatever be the credit 
inflation I(t) - S(t), we may calculate the corresponding rate of change 
in the price level. Here too, we cannot know how far this property of 
autonomy would in fact be true. It is an assumption, and it is a task 
of economic theory and research to justify it. 

Let it be established that (8.16) and (8.17) are, in fact, highly autono- 
mous relations. What is the situation with respect to the equation 
(8.18)? Obviously (8.18) would have a smaller degree of autonomy than 
either (8.16) or (8.17) separately, because the class of time functions 
satisfying (8.18) is-by definition-only the class of functions that 
satisfy (8.16) and (8.17) jointly. 

So far we have not assumed any definite relations describing the 
credit policy of the banks. We have merely described the behavior of 
individuals and firms in response to a given bank rate of interest. 
Starting from certain assumptions as to the willingness to save and to 
invest, and assuming that an inflow of extra credit into the market 
causes a proportional change in the price level, we have obtained two 
structural relations (8.16) and (8.17). The variable p(t) was considered 
as a free parameter. It might be, however, that the banks, over a cer- 
tain period of time at least, choose to follow a certain pattern in their 
interest policy, or that they have to do so in order to secure their own 
liquidity. Over this period of time it might then be that we could add 
a new relation to the ones above, namely a relation describing-tem- 
porarily-the banking policy. Assume for instance, that the banks, 
over a certain period of time, act as follows: Whenever they realize 
that I(t) - S(t) has become positive they start raising the interest rate, 
in order to protect their liquidity, and, conversely, they lower the rate 
of interest when they realize a negative I(t) -S(t). Such a policy might 
be described by the relation 

(8.20) p(t) = c[I(t) - S(t)], 

where c is a positive constant. Because of (8.16) we have 

(8.21) p(t) = c(bi - a,)[p(t) -(t)]. 
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And combining (8.18) and (8.21) we have 

(8.22) P(t) (t), 
c 

which apparently says that the price level moves in the same direction 
as the interest rate. But could we use this relation to calculate the 
"would-be" effect upon the price level of some arbitrary interest policy? 
Obviously not, because (8.22) holds only when R(t), I(t), S(t), P(t), 
p(t), and p(t) are such time functions as satisfy, simultaneously, (8.13), 
(8.16), (8.17), and (8.20). Therefore, (8.22) is of no use for judging the 
effect of a change in interest policy. To obtain an equation for this pur- 
pose we might combine (8.13) and (8.18), which give a relation of the 
form 

(8.23) P(t) + BP(t) = Hip(t) + H2R(t) + Ho, 

where B, H1, H2, and Ho are constants depending upon those in (8.13) 
and (8.18). Here there are-by hypothesis-no restrictions upon the 
time shape of the functions p(t) and R(t). We may choose such functions 
arbitrarily and solve the equation (8.23) to obtain P(t) as an explicit 
function of p(t) and R(t). 

But how could we know that (8.23) is the equation to use, and not 
(8.22)? There is no formal method by which to establish such a con- 
clusion. In fact, by starting from another model with different assump- 
tions, we might reach the opposite conclusion. To reach a decision we 
have to know or to imagine-on the basis of general experience-which 
of the two relations (8.22) or (8.23) would in fact be the most stable 
one if either of them were used as an autonomous relation. 

* * * 

To summarize this discussion on the problem of autonomous rela- 
tions: In scientific research-in the field of economics as well as in 
other fields-our search for "explanations" consists of digging down to 
more fundamental relations than those that appear before us when we 
merely "stand and look." Each of these fundamental relations we con- 
ceive of as invariant with respect to a much wider class of variations 
than those particular ones that are displayed before us in the natural 
course of events. Now, if the real phenomena we observe day by day 
are really ruled by the simultaneous action of a whole system of funda- 
mental laws, we see only very little of the whole class of hypothetical 
variations for which each of the fundamental relations might be as- 
sumed to hold. (This fact also raises very serious problems of estimating 
fundamental relations from current observations. This whole problem 
we shall discuss in Chapter V.) For the variations we observe, it is 
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possible to establish an infinity of relationships, simply by combining 
two or more of the fundamental relations in various ways. In particular, 
it might be possible to write one economic variable as a function of a set 
of other variables in a great variety of ways. To state, therefore, that 
an economic variable is "some function" of a certain set of other vari- 
ables, does not mean much, unless we specify in what "milieu" the 
relation is supposed to hold. This, of course, is just another aspect of 
the general rule we laid down at the beginning of this chapter: The rule 
that every theory should be accompanied by a design of experiments. 



CHAPTER III 

STOCHASTICAL SCHEMES AS A BASIS FOR ECONOMETRICS 

From experience we know that attempts to establish exact functional 
relationships between observable economic variables would be futile. It 
would indeed be strange if it were otherwise, since economists would 
then find themselves in a more favorable position than any other re- 
search workers, including the astronomers. Actual observations, in 
whatever field we consider, will deviate more or less from any exact 
functional relationship we might try to establish. On the other hand, 
as we have seen, the testing of a theory involves the identification of 
its variables with some "true" observable variables. If in any given 
case we believe, even without trying, that such an identification would 
not work, that is only another way of saying that the theory would be 
false with respect to the "true" variables considered. In order that the 
testing of a theory shall have any meaning we must first agree to iden- 
tify the theoretical with the observable variables, and then see whether 
or not the observations contradict the theory. 

We can therefore, a priori, say something about a theory that we 
think might be true with respect to a system of observable variables, 
namely, that it must not exclude as impossible any value system of the 
"true" variables that we have already observed or that it is prac- 
tically conceivable to obtain in the future. But theories describing 
merely the set of values of the "true" variables that we conceive of 
as practically possible, would hardly ever tell us anything of practical 
use. Such statements would be much too broad. What we want are theo- 
ries that, without involving us in direct logical contradictions, state 
that the observations will as a rule cluster in a limited subset of the set 
of all conceivable observations, while it is still consistent with the the- 
ory that an observation falls outside this subset "now and then." 

As far as is known, the scheme of probability and random variables 
is, at least for the time being, the only scheme suitable for formulating 
such theories. We may have objections to using this scheme, but among 
these objections there is at least one that can be safely dismissed, viz., 
the objection that the scheme of probability and random variables is 
not general enough for application to economic data. Since, however, 
this is apparently not commonly accepted by economists we find our- 
selves justified in starting our discussion in this chapter with a brief 
outline of the modern theory of stochastical variables, with particular 
emphasis on certain points that seem relevant to economics. 

-40- 
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9. Probability and Random Variables 

The more recent developments in statistical theory are based upon 
the so-called modernized classical theory of probability. Here "proba- 
bility" is defined as an absolutely additive and nonnegative set-func- 
tion,' satisfying certain formal properties.2 

Let us first take an example to illustrate this probability concept. 

1 See e.g. Stanislaw Saks, Theory of the Integral, New York, 1937; and Nicolas 
Lusin, Les ensembles analytiques, Paris, 1930. 

We shall make frequent use of the following common notations and definitions 
from the theory of sets: 

If A be a set of elements or objects, a, the symbol a c A is used to indicate that 
a is an element of A, or that a belongs to A. 

Let (A) be a family of sets A, and let A1 and A2 be two members of (A). If 
every element of A1 is also an element of A2, we say that A2 contains, or cov- 
ers, A1. 

The symbol A1 +A2 (called the logical sum of A1 and A2) indicates the set of 
all elements a which belong to at least one of the two sets A1 and A2. A1l A2 (called 
the logical product of Al and A2) indicates the set of all those elements a which 
belong to both A1 and A2 (i.e., their common part). These notions of sum and 
product may be extended to any sequence of sets, finite or infinite. 

If a product A1l A2 is empty, A1 and A2 are called disjunct sets. 
If A1 contains A2, A1-A2 is called the difference between A1 and A2, and de- 

notes the set of elements that belong to Al but not to A2. 
A family of sets that is such that (1) the summation of any, at most de- 

numerable, set of disjunct members of the family as well as (2) the subtraction 
A, -Ai of any two members where Ai is contained in Ai, give sets which belong 
to the family is called a Borel corpus. We denote it by {A }. 

Suppose that we associate, with each member, A, of {A}, a finite number 
F(A). Then F(A) is called a set-function. (For example, if A be an interval on a 
straight line, its length is a set-function.) The function F(A) is called additive if, 
for any arbitrary disjunct pair of sets A, and Ai in I A }, we have 

F(A; + Ai) = F(A,) + F(A,). 

F(A) is called absolutely additive if, for any at most denumerable set of disjunct 
subsets Al, A2, * * * , An, * . *, in {A }, we have 

F(A1+A2 + - - -+A.+ - - - )=F(Al) +F(A2) + *+F(A) + 

By the measure of a set A, belonging to a corpus { A }, we understand an ab- 
solutely additive set-function, m(A), such that m(A) 20, and m(A) =0 when A 
is empty. (Length, area, volume are simple examples of measures.) 

2 See e.g., J. Neyman, Lectures and Conferences on Mathematical Statistics, 
Washington, 1937, pp. 2-18; "L'estimation statistique trait6e comme un probleme 
classique de probabilit6," Actualit6s scientifiques et industrielles, 739, Conftrence 
internationales de sciences math6matiques, Paris, 1938, pp. 25-57; Paul Levy, 
Th6orie de l'addition des variables alUatoires, Paris, 1937; S. S. Wilks, Statistical 
Inference, 1936-37, Princeton, N. J., 1937; Mathematical Statistics, Princeton, 
1943. 
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Consider an ordinary die with six sides. For the purpose of probability 
calculus a die can be described as a set of 6 points on a straight line, 
x=1, 2, *. , 6. Consider now all the points on a straight line from 
- oo to + 00. Over this set of points (i.e., over the whole real axis) we 
define a nonnegative real measure-function (or, a system of "weights") 
of the following type: 

(1) To the point x = 1 we ascribe a measure P1, to the point x =2 we 
ascribe a measure P2, etc., to the point x = 6, finally, we ascribe a meas- 
ure P6, such that Pi > 0, i = 1, 2, , 6, and such that P1+P2+ 

+P66=l. 
(2) If w be any subset of points (e.g., an interval) on the x-axis, the 

measure, P(w), of the set w is defined as the sum of the measures, Pi, 
of those points, if any, among the 6 particular points x = 1, 2, - - * , 6, 
which belong to the set w. (For example, the measure of a set w defined 
by 1_x<4 would be P1+P2+P3.) 

(3) If w does not contain any of the points x =1, 2, ,6, then, for 
any such w, P(w) = 0. [For example, if w is the interval 0? x < then 
P(w) = 0.] P(w), so defined, is called the probability that a point x be- 
longs to the point-set w, or, for short, the probability of w. It follows 
that, if w is the whole real axis, then P(w) = 1. If w contains just the 
point x = 1, or x =2, or , or x=6, then P(w) =P1, or P2, or 
or P6 respectively. 

Now let us consider n dice, Nos. 1, 2, , n, (or n hypothetical 
throws with the same die), all having the same system of probabilities 
P1, P2, * , P6. Let xi be the result of one throw with the ith die, 
i=1, 2, * * , n (i.e., xi= 1, or 2, or .., or 6, with the probabilities 
P1, P2, .. , P6, respectively, all other values of xi having the probabil- 
ity zero). Consider any possible system (xl, X2, . , x.n) of values of the 
n variables x, one for each die. Any such sequence xi, X2, . . ., x,n can 
be represented by a point in n-dimensional Euclidean space. If we de- 
fine the probability of any such point as the product of the probabilities 
of each of the x's separately, we may calculate the probability of an 
arbitrary point (x1, x2, * * *, x"), or more generally, the probability of 
any arbitrary set of points in the n-dimensional linear space. It is easy 
to see that the system of all such probabilities satisfies conditions ex- 
actly similar to (1)-(3) above. The only difference is that we now con- 
sider points in n-dimensional space, instead of points on a straight line. 
For example, we might calculate the probability that exactly k (no 
matter which) out of the n variables x have the value 6, i.e., the proba- 
bility of a point (xl, X2, * *, xn) having exactly k of its co-ordinates 
equal to 6. This probability is the sum of n!/k!(n-k)! products, each 
equal to P6k(J_p6)n-k, or 
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n! 
(9.a) k!(n - k)!P6k(1 _ P6)nn-k 

which is, of course, also the probability of a proportion of "sixes" equal 
to k/n. From the formula (9.a) we may calculate the total probability 
of a set of points in the n-dimensional x-space, corresponding to a whole 
system of values of k, simply by summing up the probabilities (9.a) for 
these values of k. Hence we might also calculate, e.g., the probability, 
P, say, of Pe - e ? k/n < P6+ E, where e is any positive number. It fol- 
lows from formula (9.a), as is well known, that if Pe be a finite number, 
and if a positive e be chosen, no matter how small, then P can be made 
as near to 1 as we please by choosing n sufficiently large. 

What is the usefulness, if any, of such a purely formal apparatus, or, 
in other words, does it have any counterpart in the real world? 

First of all, let us agree to assign a practical meaning to the theoreti- 
cal notion "A probability near to 1." By this statement-when applied 
to real phenomena-we mean "practical certainty," that is, when we 
say-in the theory-that the probability of an event is near to 1, this 
means, in practical application, that we are "almost sure" that the 
event will actually occur. 

Now let us apply this to the dice-example above. If the probability 
of a "six" be P6 (not necessarily 1/6), then the probability calculus 
says that, when n is sufficiently large, the probability of a proportion 
k/n of "sixes" in n independent castings being near to Pe is almost 1. 
Translated into practical language, this means: If we cast a die ni times, 
where ni is a large number, say ni = 10,000, and obtain a proportion 
k1/n, of "sixes," then we are practically sure that in a new large number, 
n2, of castings with this die, say n2 = 10,000, the proportion k2/n2 of 
"sixes" will be near to k1/n1. Thus, for example, if we obtained 
k1/ni=1/5 for the first 10,000 castings, and, say, k2/n2= 2/5 for the 
second 10,000 castings, we should be inclined to start investigations 
of the die and the casting procedure, because we should be almost sure, 
on the basis of a great many similar experiments in the past, that 
"something was wrong." 

Purely empirical investigations have taught us that certain things in 
the real world happen only very rarely, they are "miracles," while 
others are "usual events." The probability calculus has developed out 
out of a desire to have a formal logical apparatus for dealing with such 
phenomena of real life. The question is not whether probabilities exist 
or not, but whether-if we proceed as if they existed-we are able to 
make statements about real phenomena that are "correct for practical 
purposes." 

The above example may serve to illustrate the meaning of probabil- 
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ity, and of probability calculus. We shall now give a more general defi- 
nition of probability. 

Let A be a set (finite or infinite) of specified objects of any kind 
(e.g., a set of points in a certain region of space). Let Ax =A . Ax be 
a subset of A, consisting of all those elements of A which possess a 
certain property X among a system of properties X, such that the family 
of all the corresponding sets A . Ax form a Borel corpus { A . Ax }, and 
such that A c {A . Ax }. Assume, furthermore, that we have defined a 
measure, m(A Ax) > 0, within { A * Ax }, such that m(A) > 0, and 
m(A * Ax) = 0 when A * Ax is empty. The set A is then said to be proba- 
bilized (Neyman). A is called a fundamental probability set. For any 
element A * Ax of { A Ax } we define 

P(XI A =m(A -Ax) 
(9.1) P(XjA)= m(A) 

as the probability of an element of A possessing the property X. From 
the definition of a Borel corpus, and the definition of the measure 
m(A -Ax) it follows that 

0<P(XIA)<1, and P(XIA)+P(XIA)=1, 

where X is the property "not X." 
Any real variable, x, defined as a single-valued measurable function 

of the elements in a probabilized set A, is called a random variable. As 
a particular case x = x? = constant may have the probability 1, while all 
other values of x have the probability 0. Then x is a constant in the 
stochastical sense. The values of x may be considered as properties of 
the elements of A. 

A function, x, of the elements in the set A is measurable if the sub- 
set of A given by x<c is measurable, in the probability measure de- 
fined, for every finite value of c. Therefore, whatever be the real num- 
bers Cl <C2, the definitions of A and x determine uniquely the probability 

(9.2) P(Cl . x < c21 A). 

And it is always possible to find cl and C2 such that 

(9.3) 0 < P(C1 < X < C21 A) < 1. 

For any fixed c1, P(cl?x <C21 A) is a monotonically nondecreasing func- 
tion of c2, called the integral probability law of x. 

The above definition of probability and random variables is prac- 
tically equivalent to the following more direct definition: Let x be a 
real variable; its values can be represented by points on a straight line 
from - X0 to + oo. Let { w } be a Borel corpus of measurable sets, w, on 
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this line, such that, in particular, { w } contains the system of all inter- 
vals C1 _ X < C2, where c1 < c2 may be any pair of real numbers. Let P (w) 
be a set-function defined over { w }, such that P(w) is (1) nonnegative, 
(2) absolutely additive, and (3) equal to 1 if w contains all points x 
from - oo to + X . Then this defines x as a random variable such that 
the probability of (x e w) is given by P(w). 

If there exists a nonnegative, Lebesgue-measurable function, p(x), 
such that, for every interval (c1, c2) for which P (c1 ? X < c21 A) is defined, 
we have 

(9.4) P(cl < x < c2 I A) = fC2p(x)dx, 

where the integral is that of Lebesgue, then p(x) is called the elementary 
probability law (or the probability density function) of x. 

In statistics we usually have to consider systems of several random 
variables. There are two principal types of such systems, and-al- 
though they are not really different from the point of view of statistical 
methodology-the distinction between them helps when we want to 
compare a hypothetical model with actual observations. 

The first type refers to a system of several random variables 
X1, X2, , xr, associated with each element of a fundamental proba- 
bility set. (For example, the fundamental probability set may be all 
persons who lived in the United States during the whole year 1940; 
xi may be personal income, x2 may be private fortune, etc.) For each 
element of the fundamental probability set, the system of values 
X1, X2, - * -* Xr, may be represented by a point, Er, say, in r-dimensional 
space Rr. If w be any measurable set of points in Rr, we denote by 

(9.5) P(Er c w I A), or, for short, P(w) 

the probability that an arbitrary point Er belongs to w. [In the follow- 
ing we shall use the shorter notation P(w) in all cases where there is 
no danger of confusion as to what variable-space is considered.] P(w), 
considered as a function of the set w, is called the simultaneous integral 
probability law of xi, x2, * X, Xr, within the fundamental probability 
set A. 

It will be noticed that we use the same symbol P to indicate two 
different things, namely (1) a number, and (2) a function. If the argu- 
ment, w, is a fixed set of points, wo say, then P(wo) means a number, 
namely the probability of wo. If w is considered as an arbitrary, vari- 
able argument, then P(w) means the probability function. We shall 
use particular letters or subscripts, etc., to indicate fixed sets in the 
variable-spaces in question, so no confusion can arise. 
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If there exists a nonnegative, Lebesgue-measurable function 
p(xI, x2, * *, xr), such that, for every w for which P(w) is defined, 
we have 

(9.6) P(w) = J ... p(xl, x22 ... * xr)dx,dx2 ... dXr, 
(W) 

then p(xl, x2, , xr) is called the joint elementary probability law of 
XI) X2, , * Xr. 

Let pi(x1), p2(X2), , Pr(Xr) be the elementary probability laws of 
the r variables x taken separately (i.e., the marginal distributions of 
the x's), within A. If then 

(9.7) p(xi, X2, * *, Xr) = pl(xl) P2(X2) * Pr(Xr), 

the variables xi, X2, * * *, ,Xr are said to be stochastically independent. 
The second type of systems of random variables refers to random 

sampling. Suppose that we have a fundamental probability set, A, each 
element of which is characterized by the values of r random variables, 
xl, X2, . . ., x. And suppose that we fix a certain rule by which to pick 
out a system of s elements from A. Let (x11, X2l, . , Xri) denote the 
system of values of the first element picked, (xv2, X22, * * , xr2) that for 
the second element, and so forth. Let Bi denote the subset of A corre- 
sponding to all a priori possible value-systems (xli, X2i, , xri) for the 
element to be picked as No. i (i= 1, 2, *, s). Bi may be considered as 
the fundamental probability set of the random variables xii, X2i, . , .ri 
The system 

(Xll, X21, * * Xrl) X 

(9.8) (X12, X22, , Xr2), 

(Xls, X282 * Xrg)X 

is called a sample of size s from the r-variate fundamental probability 
set (or "population") A, or, what amounts to the same thing, s samples 
of one observation each, namely one system of values (Xl, X2, * * *, Xr) 

for each fundamental probability set Bi. The joint distribution of 
(Xli, X2i, *, xri) may clearly change with i. The system (9.8) may 
also be considered as one sample of just one observation, namely one 
element picked from an rs-variate population, say B. Each element 
in B would then be characterized by a set of values of the rs random 
variables (9.8), and the probability distribution associated with B 
would be of rs dimensions. Each system of values (9.8) may be repre- 
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sented by a point, E, in rs-dimensional Euclidean space. Such a point, 
E, is called a sample point, or a point in the rs-dimensional sample space. 

By random sampling we usually understand an experimental arrange- 
ment such that the various sets Ei = (x1i, X2V, ..., xri) (i = 1, 2, s), 
in (9.8) are mutually independent, i.e., such that, if the elementary 
probability laws exist, 

(9.9) p(E) = p1(E1) -p2(E2) ... ps(Es). 

The dependence or independence within each system Ei = (xiX, x2;, 
Xrs) is usually "given by Nature." 

When the (integral or elementary) probability law of a system of 
random variables is known, there are standard mathematical rules for 
deriving the probability laws of functions of these variables. (See, e.g., 
J. V. Uspensky, Mathematical Probability, New York, 1937.) 

10. The Practical Meaning of Probability Statements 

At the beginning of the preceding section we gave a simple illustra- 
tion of the practical meaning of probability statements. We can now 
give a more general interpretation of such statements. 

Suppose we should know that n observable variables xi, x2, * X,n 
have the joint elementary probability law p(x1, x2, * * *, x" ). What 
are the practical statements we could make about a set of values 
(xl, x2, ... , x n) not yet observed? It has been found fruitful in various 
fields of research to use the observable "frequency of occurrence" of 
an event as a practical counterpart to the purely theoretical notion of 
probability. That is, if the elementary probability law p implies that 
the probability of a certain region or set, w say, in the n-dimensional 
x-space is P(w), we take this to mean that by repeated actual observa- 
tions of points (xl, X2, * , xn) in the x-space the relative frequency 
of points falling into w would, for a very large number of points of 
observation, be close to P(w). 

However, as a rule we are not particularly interested in making state- 
ments about such a large number of observations. Usually, we are inter- 
ested in statements that could be made about a relatively small number 
of observation points; or, perhaps even more frequently, we are inter- 
ested in a practical a priori statement about just one single new ob- 
servation. Then it is of relatively little practical value to know that 
P(w) is, let us say, 0.4, 0.5, or 0.6. For then we cannot have much con- 
fidence, either in the statement that the next observation point will 
fall into w or in the statement that it will fall outside w. In order to 
be able to make a useful statement, the situation must be such that 
there exists an "interesting" subset w for which the probability P(w) 
is near to 1; or, in practical interpretation, such that "nearly every" 
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observation will fall into w. Then we could say that it would be a 
"miracle" if, in particular, the next observation should fall outside w. 
That is, we should be almost sure that this would not happen. Experi- 
ence has shown that the purely hypothetical notion of probability dis- 
tributions is a useful tool for deriving such practical statements. 

Above we considered "frequency of occurrence" as a practical coun- 
terpart to probability. But in many cases such an interpretation would 
seem rather artificial, e.g., for economic time series where a repetition 
of the "experiment," in the usual sense, is not possible or feasible. 
Here we might then, alternatively, interpret "probability" simply as 
a measure of our a priori confidence in the occurrence of a certain event. 
Also then the theoretical notion of a probability distribution serves us 
chiefly as a tool for deriving statements that have a very high proba- 
bility of being true, the practical counterpart of which is that "we are 
almost sure that the event will actually occur." 

Much futile discussion has taken place in regard to the questions of 
what probabilities actually are, the type of events for which probabili- 
ties "exist and so forth. Various types of "foundations of probability" 
have been offered, some of them starting from observable frequencies 
of events, some appealing to the idea of a priori belief or to some other 
notion of reality. Still other "foundations" are of a purely formal na- 
ture without any reference to real phenomena. But they all have one 
thing in common, namely, that they end up with a certain concept of 
probability that is of a purely abstract nature. For in all the "founda- 
tions" offered the system of probabilities involved are, finally, required 
to satisfy some logical consistency requirements, and to have these ful- 
filled a price must be paid, which invariably consists in giving up the 
exact equivalence between the theoretical probabilities and whatever 
real phenomena we might consider. In this respect, probability schemes 
are not different from other theoretical schemes. The rigorous notions 
of probabilities and probability distributions "exxist" only in our ra- 
tional mind, serving us only as a tool for deriving practical statements 
of the type described above. 

When we state that a certain number of observable variables have 
a certain joint probability law we may consider this as a construction 
of a rational mechanism, capable of producing (or reproducing) the ob- 
servable values of the variables considered. When we have observed a 
set of values of n observable variables (xl, X2, *. *, x") we may, without 
any possibility of a contradiction, say that these n values represent a 
sample point drawn from a universe obeying some unknown n-dimen- 
sional (integral) probability law. Whatever be the a priori statement 
we want to make about the values of n observable variables, we can 
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derive this statement from one of several (perhaps infinitely many) 
suitably chosen n-dimensional probability laws. The class of all n-di- 
mensional probability laws can, therefore, be considered as a rational 
classification of all a priori conceivable mechanisms that could rule the 
behavior of the n observable variables considered. 

Since the assignment of a certain probability law to a system of ob- 
servable variables is a trick of our own, invented for analytical pur- 
poses, and since the same observable results may be produced under a 
great variety of different probability schemes, the question arises as to 
which probability law should be chosen, in any given case, to represent 
the "true" mechanism under which the data considered are being pro- 
duced. To make this a rational problem of statistical inference we have 
to start out by an axiom, postulating that every set of observable vari- 
ables has associated with it one particular "true," but unknown, proba- 
bility law. Since the knowledge of this true probability law would 
permit us to answer any question that could possibly be answered in 
advance with respect to the values of the observable variables involved, 
the whole problem of quantitative inference may then in each case be 
considered as a problem of gathering information about some unknown 
probability law. 

11. Random Variables and Probability Distributions in 
Relation to Economic Data 

Through experience we have learned much about the type of real 
phenomena to which the schemes of probability theory are most suc- 
cessfully applied. (Later, we shall show that the field of application 
for probability schemes is much more general than is indicated in this 
section.) These phenomena we group under the name "random experi- 
ments." We cannot give a precise answer as to what is a random ex- 
periment, because it is not an abstract concept, but only a name applied 
to certain real phenomena. But we may indicate some of the essential 
properties that we ascribe to such experiments. First, the notion of 
random experiments implies, usually, some hypothetical or actual pos- 
sibility of "repeating the experiment" under approximately the "same 
conditions." Second, it is implied that such repetitions may give vary- 
ing results. And third, the inferences we draw from random experiments 
are essentially of the type: How often does a certain result occur? 

Does this description apply to economic data? 
Here, I think, it is useful-though not always actually possible-to 

make a distinction between two different classes of experiments, 
namely, on the one hand, those we plan and perform ourselves, as 
research workers, to investigate certain facts already present; on the 
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other hand, the experiments which, so to speak, are products of Nature, 
and by which the facts come into existence. To bring out this distinction 
more clearly, let us consider an example. 

Suppose we try to "explain" the size and the variations of consump- 
tion of a given commodity, A, in a society or group consisting of N 
individuals or families. What we usually mean by "explanation" in such 
a case is that we want to pick out certain other measurable factors, the 
variations of which-by hypothesis or by experience-might be ex- 
pected to "influence" the behavior of each individual, or family, etc., 
in the same way. Suppose we have specified a certain number of such 
factors, in the present case, for instance, price of the commodity A, 
prices of other commodities, individual (or family) income, the age of 
the individuals, etc. Let there be, all together, n such specified factors, 
xl, X2, ... , x,,; and let the actual consumption of the commodity A 
for a given individual (or family) be denoted by y. We neglect for the 
moment the errors of observation due to lack of precision in the defini- 
tions of what y and the variables x represent, as well as imprecision 
due to errors of measurement proper. In other words, we deal here with 
"true" variables as described in Section 3. 

Let us assume, tentatively, that, for each individual, we could "ex- 
plain" his consumption of A by an equation, say 

(11.1) y* = f(Xl, X2, . * Xn), 

where y*, for each individual, is obtained by inserting in the right-hand 
side of (11.1) those values of the influencing factors x that are rele- 
vant to him. However, if we do this for each individual, we shall find- 
no matter what be the fixed functionf-that our "explanation" is incom- 
plete. More specifically, we shall find that two individuals, or the same 
individual in two different time periods, may be confronted with ex- 
actly the same set of specified influencing factors x [and, hence, they 
have the same y*, by (11.1)], and still the two individuals may have 
different quantities y, neither of which may be equal to y*. We may try 
to remove such discrepancies by introducing more "explaining factors," 
x. But, usually, we shall soon exhaust the number of factors which 
could be considered as common to all individuals, and which, at the 
same time, were not merely of negligible influence upon y. The dis- 
crepancies y - y* for each individual may depend upon a great variety 
of factors, these factors may be different from one individual to an- 
other, and they may vary with time for each individual. 

In a purely formal way we may replace y* by y in (11.1) and, instead, 
add a general shift, s, to take care of the discrepancies between y 
and y*, i.e., 
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(11.2) Y = f(x1, X2, , * * -Xn) + S. 

Suppose, e.g., we should know or assume that, for each set of values of 
the variables x, s (and, therefore, y) is a random variable having a cer- 
tain probability distribution with zero mean (say). What is the mean- 
ing of such a scheme? 

Let us pick out a subgroup of individuals from the total group of N, 
such that, for each member of this subgroup, the factors x are identi- 
cally the same. When, nevertheless, the quantities y for the members 
of this subgroup are different, it means that the decisions of the in- 
dividuals, even after fixing the values of xi, X2, * - *, x, are still to 
some extent uncertain. The individuals do not all act alike. When we 
assume that s has, for each fixed set of values of the variables x, a 
certain probability distribution, we accept the parameters (or some 
more general properties) of these distributions as certain additional 
characteristics of the theoretical model itself. These parameters (or 
properties) describe the structure of the model just as much as do the 
systematic influences of xl, X2, * *, x,, upon y. Such random elements 
are not merely some superficial additions "for statistical purposes." 

When we describe s as a random variable with a certain probability 
distribution for each fixed set of values of the variables x, we are 
thinking of a class of hypothetical, infinite populations, each of which 
is completely described by the scheme (11.1) and by the characteristics 
of the distributions of s. The total number of individuals, N, actually 
present may then be considered as a mixed sample consisting of sub- 
samples drawn from members of the hypothetical class of populations. 
There is no logical difficulty involved in considering the "whole popu- 
lation as a sample," for the class of populations we are dealing with 
does not consist of an infinity of different individuals, it consists of an 
infinity of possible decisions which might be taken with respect to the 
value of y. And all the decisions taken by all the individuals who were 
present during one year, say, may be considered as one sample, all the 
decisions taken by, perhaps, the same individuals during another year 
may be considered as another sample, and so forth. From this point of 
view we may consider the total number of possible observations (the 
total number of decisions to consume A by all individuals) as result 
of a sampling procedure, which Nature is carrying out, and which we 
merely watch as passive observers. 

It is on purpose that we have used as an illustration an example of 
individual economic behavior, rather than an average market relation. 
For it seems rational to introduce the assumptions about the stochasti- 
cal elements of our economic theories already in the "laws" of behavior 
for the single individuals, firms, etc., as a characteristic of their be- 
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havior, and then derive the average market relations or relations for 
the whole society, from these individual "laws." It will then, for ex- 
ample, in many cases be possible to show that, even under very weak 
assumptions about the distributions of the stochastical elements in 
these individual relations, the derived average or total relations for the 
whole market or the whole society will be characterized by certain com- 
pound stochastical variables (e.g., sums of individual error terms) 
which, by the laws of large numbers, will be approximately normally 
distributed. 

As active research workers we may produce another type of random 
experiments. For instance, in the example above we might pick out, 
by some random process, a subgroup of all individuals actually present, 
and measure their y's and x's. From this subgroup we might draw infer- 
ence as to the behavior of the whole group. But the connection between 
such a subgroup and the total group that we might have observed 
is different from that between this total group of individuals (or de- 
cisions) present and the hypothetical class of infinite populations from 
which the total group present is supposed to be drawn; for the first 
connection is, essentially, dependent upon our own choice of the ran- 
dom sampling procedure to be used. By choosing another random proc- 
ess we get another connection. And we might here gradually remove 
all possible sampling errors by increasing the size of the sample, so 
that, finally, we should obtain a true picture of the sample of all in- 
dividuals present. But the uncertainty in the correspondence between 
this sample of all individuals and the hypothetical class of infinite 
populations still remains. One problem is to construct hypothetical 
probability models from which it is possible, by random drawings, to 
reproduce samples of the type given by "Nature." Another problem is 
to make exact measurements of these samples. The first task is essen- 
tially one of economic theory. The second is one of statistical observa- 
tion technique and "classical" sampling theory. Of course, after the 
stochastic schemes have been chosen, there is no essential difference 
between the problems of statistical inference they present. 

12. The Method of Splitting the Observable Variables into 
"Systematic Parts" and "Disturbances" 

Observable economic variables do not satisfy exact relationships (ex- 
cept, perhaps, some trivial identities). Therefore, if we start out with 
such a theoretical scheme, we have-for the purpose of application-to 
add some stochastical elements, to bridge the gap between the theory 
and the facts. One much-discussed way of doing this is to adopt the 
convention that the observable variables considered are each made up 
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of two parts, viz., a systematic part which, by assumption, satisfies the 
exact relation considered, and an error part, or "disturbance," of a 
stochastical nature.3 

Let xi', X2', , x.' be n theoretical variables satisfying, by as- 
sumption, a certain exact functional relationship. And let xi, x2, * * *, x", 
be the corresponding observable variables to be considered. We then 
write xi =xi+x ", i = 1, 2, * * , n, where the variables x" are certain 
stochastical variables. In order that our relation between the variables 
x' should also tell something about the observable variables x we have 
to make certain additional assumptions about the distribution of the 
variables x". Then our exact relation between the variables x' becomes 
in fact a stochastical relation in the variables x and x", by substituting 
xi-xi" for xi'. 

It is important to notice, however, that such a splitting of the varia- 
bles is necessarily of a relative nature, depending on the particular sys- 
tem of theoretical equations with which we are concerned. 

This can be brought out rather well by means of a theoretical illus- 
tration. 

Consider for this purpose three ordinary dice, one black, one red, and 
one white, and let us perform the following series of experiments: First, 
we cast all three dice. We obtain as result three numbers, say Xb for 
the black die, x. for the red, and x. for the white. Let the sum of these 
three numbers be X=Xb+xr+xw. Next, we let the black die remain in 
its position from the first casting (of all three dice), but we cast again 
both the red and the white one. Let the result of this experiment be yb 
(=Xb), yr, and yw, and let Y=yb+yr+yw. Now, finally, we let both the 
black and the red dice remain untouched, but we cast the white one 
again. Let the result of this experiment be Zb (=Yb=Xb), Zr (=Yr), 
and zw, and let Z=Zb+Zr+z+w. Assume that we repeat this whole ex- 
periment N times. We obtain three series 

Xi, Yi, Z1 (lst experiment), 

(12.1) X2, Y2, Z2 (2nd experiment), 

XN, YN, ZN (Nth experiment). 

From the set-up of these experiments it is evident that the three se- 
ries X, Y, Z, are correlated, because they have some common compo- 

a This scheme is, e.g., the basis for Frisch's method of "Confluence Analysis." 
See Ragnar Frisch, Statistical Confluence Analysis by Means of Complete Regres- 
sion Systems, Oslo, 1934. See also T. Koopmans, Linear Regression Analysis of 
Economic Time Series, Haarlem, De Erven F. Bohn N. V., 1937. 
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nents. Indeed, for any triple, say Xi, Yi, Z; (the result of the ith experi- 
ment), we have 

Xi = Xbi + Xri + Xwi 

(12.2) Yi = Xbi + Yri + Ywiy (i = 1, 2, * * N). 

Zi = Xbi + Yri + Zwiy 

Suppose now that we want to study the interdependences between 
the three variables X, Y, Z, separating as "disturbances" those factors 
which are not "common causes." From (12.2) we derive 

y- (Yri + Ywi) = Xi - (xri + Xwi), 

(12.3) Zi - (yri + Zwi) = Xi- (xr + Xi), (i = 1, 2, , N), 

Z;- (Z.i) = Yi- (Ywi), 

where the expressions in brackets indicate "disturbances." The com- 
position of the disturbances clearly depends upon which relation we are 
investigating. And to neglect this would make inefficient theory. 

This schematic set-up has, I think, some relevance to many impor- 
tant problems in economics. E.g., let X, Y, and Z represent results of 
decisions taken in some economic planning. Then the scheme above 
may be looked upon in the following way: First X is determined by 
some considerations, which we do not investigate in this connection. 
Once this decision is taken, the decision Y is no longer quite free, it is 
"influenced" by X. But there are also other factors determining Y that 
have nothing to do with X, namely yr and yw. These factors, however, 
which act as disturbances in Y with respect to the "cause" X, are them- 
selves partly systematic "causes" with respect to the decision Z after 
Y is chosen. 

Let us consider an example from economic dynamics: The interrela- 
tion between investment and profit. Let v(t) denote observed invest- 
ment activity (per year) at point of time t, and let z(t) be observed 
profit. Assume there are no errors made in registering these quantities. 
We make the following hypotheses: Investment activity at t depends 
upon profit realized at some previous time, say at (t-0), while profit 
at t depends upon current investment at t. Letting el(t) and e2(t) denote 
certain general random shifts, we may express these hypotheses by 

(12.4) v(t) = f[z(t - 0) ] + el(t), 

(12.5) z(t) = g[v(t) ] + E2(t), 

where 0 is positive, and where f and g are certain functions. Now it may 
be that, in (12.4), we have to allow for a considerable disturbance, 
el(t), in v(t) as compared with that part of v(t), [namely v(t)-el(t)], 
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which is "explained" by z(t- 0). But this does not mean that only this 
part of v(t) influences z(t) through (12.5) [i.e., that we could replace 
v(t) by v(t) - e1(t) in (12.5) ]. Most certainly the actual investment [i.e., 
v(t) ] has a more direct bearing upon the profit z(t) than our hypotheti- 
cally constructed "systematic part" of it [namely v(t) - e1(t) ]. 

The occurrence of such situations has very important consequences 
for the problem of linking together conclusions drawn from different 
relationships, as we shall see in the next section. 

13. Stochastic Equations versus Exact Equations 

The statement: "A set of variables satisfies a certain equation," has 
a different meaning according as it is applied to an abstract mathe- 
matical scheme or to variables observed in real life. 

In an abstract mathematical scheme the statement means the fol- 
lowing: Let x1', X2', * , x,', be n real variables. Each set of values 
of these n variables may be represented by a point in n-dimensional 
Cartesian space. Let us denote by S the set of all points in this space, 
and let "A" be a rule by which to pick out a certain subset of points, 
SA, of S. Let us exclude all points of S which do not belong to SA. Then, 
if a function f exists that is not identically zero but is such that 

(13.1) f(xl', X2', X , *X,X) = 0 

for all points belonging to SA, we say that the variables xi', x2', Xn 
(the variations of which are limited by the rule "A") have the property 
of satisfying the equation f= 0. Here the whole set SA is given by defini- 
tion through a logical operation A, and we may check whether the 
statement in (13.1) is right or wrong. 

Similar statements about variables observed in real life are of a much 
more hypothetical character. When we make statements of the type 
(13.1) about a set of observable variables, say x1, x2, * , x", we as- 
sume, so to speak, that Nature has a rule for picking out such observa- 
tion points (x1, x2, * , x n) in the x-space in such a way that none 
of these points contradict the hypothesis (13.1) when the variables x' 
are replaced by the variables x. We then say that (13.1) is a law of 
Nature. We try to establish such laws by testing the truth of (13.1) 
with respect to past observations. But even if they all satisfy (13.1), 
we cannot know that the next observation will do so. We usually, how- 
ever, think that it will, because we have an enormous record of empiri- 
cal cases showing that such empirical inductions have actually been 
very fruitful. At the same time, we have also learned that, in empirical 
research, it is useful to replace the expression "a set of variables satis- 
fies a certain equation" by the expression "satisfies approximately" 
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such an equation. This means that, if we insert observation points 
(x1, X2, * *, x") in the left-hand side of (13.1), we obtain, on the right- 
hand side, a certain variable, s. 

Then-as we have already discussed above-if such an expression 
as "satisfies approximately" shall have a nontrivial meaning, we must 
change the hypothesis (13.1) in such a way that it expresses what kind 
of approximation we assume. One way of doing this is to change the 
hypothesis (13.1) to 

(13.2) f(xl, X2, ..., x n) = s, 

and ascribe to s certain general properties which should not be contra- 
dicted by data. We are particularly interested in such schemes as 
ascribe to s certain general properties of a random variable, first, be- 
cause we have a large record of empirical cases showing that such 
schemes have been successfully applied to observed phenomena, and, 
secondly, because the theory of such schemes has been more developed 
than any other approximation schemes. And we find justification for 
applying them to economic phenomena also in the fact that we usually 
deal only with-and are interested only in-total or average effects of 
many individual decisions, which are partly guided by common fac- 
tors, partly by individual specific factors (see Section 11). 

In case s is assumed to be a random variable, we say that the varia- 
bles x satisfy a stochastic equation (13.2). This is, of course, only a very 
particular type of stochastic equations. Here we have not "blamed" 
any particular element in our scheme for the fact that the observed 
variables x1, x2, . ., x, X do not satisfy (13.1) exactly. We may operate 
with other schemes specifying more in detail where the stochastic ele- 
ments come in. In general, we may lay down the following definition: If 
x1, X2, ..., x,n be a set of observational variables, and if El, E2, * * *Xm 

be m random variables, and if a function, F, not identically zero, ex- 
ists, such that for all observations 

(13.3) F(xi, x2, * , x-n; E1, E2, * Em) = 0, 

then x1, x2, , Xn, are said to satisfy a stochastic equation. Thus, a 
stochastic equation in n variables may be an exact equation in n+m 
variables. 

Suppose that our observation material consists of N>>n points in 
the n-dimensional space of the variables x, and suppose that we ascribe 
to the joint probability distribution of qi, E2, , * * Emc certain proper- 
ties a priori. Now we insert, successively, the N observation points for 
the variables x in (13.3), and for each observation point we choose a 
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set of values of the e's such that (13.3) is fulfilled. Thus, we get a sample 
of N points in the m-dimensional Cartesian space of the e's. On the 
other hand, by ascribing a priori certain properties to the probability 
distribution of the e's, and by excluding the possibility of obtaining 
certain samples of the e's which then are "improbable" (in some sense 
or other, a question to be discussed later), we have set a probability 
limit to the subset of admissible samples of the e's. Let this set of ad- 
missible sample points for the e's be Q. Then we may say that, if the N 
observation points in the x-space are such that-under the condition 
(13.3)--it is possible to choose a sample of N sets of e's which belong 
to the set Q, then we cannot reject the hypothesis that the n variables 
Xl, X2, * , x., satisfy the stochastic equation (13.3). 

From a stochastic scheme of the form (13.3) we may derive certain 
exact equations, not containing the random variables e, by giving one or 
more of the variables x a new interpretation. There are two important 
different types of such derived exact equations. The first type could 
be called "if-there-were-no-errors equations," the second, "expected- 
value equations." 

The first type is obtained by assigning to the random variables e in 
(13.3) certain constant values. In most cases we should formulate the 
stochastic equation in such a way, if possible, that these constant val- 
ues of the &'s would be zero. Then, of course, if we require that 

(13.4) F(xi, x2, * , Xn; 0, 0, - * *, 0) = 0 

we impose a condition upon the variables x which, in most cases, will 
be violated by actual observations. Therefore, if (13.4) is imposed, one 
or more of the variables x must stand for-not what they actually are- 
but what they would be "if there were no errors." This kind of simpli- 
fied exact equations, therefore, represents a hypothetical correction of 
the individual observation points in the x-space. 

The second type of "exact" equations, on the other hand, represents 
average relations in a group of observations. Here we do not simplify 
the original scheme, but we confine ourselves to studying certain 
stochastic limit properties of the scheme. We may illustrate the differ- 
ence by a simple example. 

Consider a group of families of equal size and composition. Let r be 
family income, and let x be family spending, during a certain period of 
time. Assume all prices constant and the same for all families during 
this period. Still, among those families who have the same income, the 
amount spent, x, will vary from one family to the other, because of a 
great many neglected factors. Let us assume that the spending habits 
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of an infinite population of such families could be described by the 
following stochastic equation 

(13.5) log6 x = k log, r + ko + e (k and ko = constants), 

where e is a random variable, normally distributed with zero mean and 
variance = a2. From this stochastic scheme we may derive the following 
two "exact" equations: 

First, let us imagine that we could, somehow, remove the forces 
which cause the discrepancies e. In this hypothetical population all 
families with the same r would act alike, and we should have 

(13.6) log, x = k loge r + ko. 

Secondly, let the "errors" e remain in the scheme, but consider only 
the average or expected consumption for those families who have the 
same income r. This gives 

(13.7) E(x I r) = x(r) = eko- r' J et e-i2/2a2de = eko?+&2 . rk 

where E(x| r) means: Expected value of x, given r. 
Therefore, what the average family in the scheme (13.5) does is not 

necessarily the same as what the families would all do if they acted 
alike. 

It is particularly important to be aware of the difference between 
these two types of relations when we want to perform algebraic opera- 
tions within stochastic equation systems. For instance, from the theo- 
retical scheme (13.6) we may derive 

(13.8) x = ekork. 

But from E(log6 xl r) =k log. r+ko we do not get E(xj r) =ekork. 
Therefore, when we perform such operations, we must keep in mind 

that we are using the hypothetical "if-there-were-no-errors" scheme, 
and not the "expected-value" scheme. Confusion on this point arises 
usually from the habit of dropping the operation symbol E (or the bar 
over x, etc.) in such equations as (13.7). Confusion arises in particular 
when we have a system of stochastic equations and apply algebraic 
elimination processes to the corresponding "expected-value" equations. 
The usual mistake here is that we identify the expected values of a 
variable in one equation with the expected values of the same variable 
in another equation. This may lead to nonsensical results. The following 
is an illustration: 
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Let x1, X2, X3 be three observable variables, defined by XI = e1+ E2, 
X2 = k1e1, and X3 = k2e2, where ec and E2 are two independent random vari- 
ables with zero means. Then we have 

1 1 
(13.9) xi' = E(x1 I x2) = - x2, x1" = E(x1 I X3) = -X3. 

ki k2 

Now, if we identify (by mistake) the two variables xi' and x1", denoting 
them both by xi say, we get X2 = (k1/k2)x3, which has no meaning. 



CHAPTER IV 

THE TESTING OF HYPOTHESES 

Statisticians have, often with much right, argued that the econ- 
omists do not present their theories in such a form that these theories 
represent well-specified statistical hypotheses, and that, therefore, the 
statisticians simply do not "understand the language" of the econo- 
mists. The economists, however, are not the only ones to be blamed. 
Indeed, the whole statistical theory was, until rather recently, in a 
state of much confusion. But this situation is now disappearing rapidly, 
through a very fruitful change of direction brought about by the funda- 
mental work of J. Neyman and E. S. Pearson.' By introducing a few 
very general-and, in themselves, very simple-principles of testing 
statistical hypotheses and estimation, they opened up the way for a 
whole stream of high-quality work, which gradually is lifting statistical 
theory to a real scientific level. The working out of technical details 
on the basis of the general principles introduced by Neyman and Pear- 
son is still only in its beginning. And very difficult technical problems 
are likely to arise. But the fundamental importance of the Neyman- 
Pearson principles lies in the fact that these principles specify clearly 
the class of problems that fall within the field of statistical theory and 
statistical inference. Thus, it has now become possible for the econo- 
mist to see exactly how he has to formulate his theories if he wants the 
assistance of a statistician. It is of the greatest importance that the 
economist himself should know these principles of formulation, for then, 
even if he is not himself a statistical expert, he can at least ask intelli- 
gent statistical questions. 

In the following we shall give a brief outline of the basic principles 
in the Neyman-Pearson theory of testing statistical hypotheses and 
estimation, and, thereafter, we shall use these principles for a statistical 
formulation of hypotheses constructed in economic theory. This will, it is 
hoped, clear up a few controversial issues in connection with the prob- 
lem of statistical "verification" of economic relations. 

14. An Outline of the Neyman-Pearson Theory of Testing 
Statistical Hypotheses and Estimation 

Let xl, X2, * *, x, denote n random variables defined within a 
fundamental probability set A. And let P(En ? Wn4 A), or, for short, 
P(w), be their joint integral probability law. 

1 See, in particular, Statistical Research Memoirs, Vol. I, 1936, Vol. II, 1938, 
London. Other references are given in the following text. 

-60- 
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Any tentative statement, H, concerning the integral probability law 
P(w) of the variables xi, X2, * *, xn [or concerning their elementary 
probability law, p(x1, X2, , xn,) if this is assumed to exist], is called 
a statistical hypothesis. More precisely, let Qn, or for short, Q, denote 
the set, or class, of all possible n-dimensional integral probability laws, 
and let co be any specified subset of Q (w may, e.g., be the set of all 
n-variate normal distributions, or the set of all n-variate continuous 
distributions, or any other subset of U). A statement of the form 

(14.1) P(w) w 

(read: The integral probability law of x,, X2, , x,, belongs to the 
class w) is called a statistical hypothesis. 

The statement (14.1) might be wrong, and then the alternative is that 

(14.2) P(w) e (Q - co). 

Above, the only thing assumed to be known for certain was that 
P(w) e Q2, which is trivial. Usually, however, we know-or at least we 
assume that we know-more than this. Let Q? denote a subset of U. 
And let co0 be any subset of Q?. If, on the one hand, we know or assume 
that the statement 

(14.3) P(w) E Q? 

is true, while, on the other hand, we admit that for any subset wO ' Q?, 
the statement 

(14.4) P(w) e wO 

may be wrong, then Q? is called the set of a priori admissible hypotheses 
with respect to the probability law P(w). (For example, Q? might be 
the set of all n-dimensional probability laws for which the elementary 
probability law exists, and w? might, e.g., be the set of all probability 
laws the elementary probability laws of which are symmetric about the 
mean.) In problems of testing a statistical hypothesis the specification 
of the set of a priori admissible hypotheses is, as we shall see, of funda- 
mental importance. 

A statistical hypothesis is called simple if it specifies completely the 
probability law P(w). E.g., the statement 

(14.5) P(w) = JJ . 3 e-(1I2o')z(xi.;)'dxidx2 ... dx,, 

where xi (i =1, 2, * - , n) and cr are numerically specified constant 
parameters, is a simple hypothesis. Any hypothesis that is not simple 
is called composite. For example, if the value of the parameter o- or 
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some of the means ti or all together are not uniquely specified, then 
(14.5) is a composite hypothesis. 

A set of admissible hypotheses, Q?, is called parametric, if all the 
probability laws P(w) belonging to Q? are given by analytic expressions 
which differ from each other only with respect to the numerical values 
of a finite number of parameters. For example, all probability laws 
(14.5) such that ti>0, i=1, 2, ** , n, form a parametric set. A set 
which is not parametric is called nonparametric. If Q? is parametric 
then the set w0 must be parametric. But if Q20 is nonparametric, wc 
[in (14.4) ] may or may not be parametric. 

A test of a statistical hypothesis is a rule of rejection or nonrejec- 
tion of the hypothesis, on the basis of a given sample point. Let 
X1, X2, *, x,, be n random variables, and let Q? be the set of all a 
priori admissible hypotheses about their simultaneous integral proba- 
bility law P(w). For any particular member of the set Q?2, and for any 
particular subset, w, of points in the sample space Rn, we might cal- 
culate the probability that a sample point, E, falls into w. If w be fixed, 
the probability of E falling into w (= w? say) will generally vary ac- 
cording to which member of Q?2 is used to calculate it. What is an 
"improbable" part of the sample space with respect to one probability 
law in Q?2 may be a more probable one for another probability law in Q?. 
And this fact, of course, forms the basis for testing any particular hy- 
pothesis within Q? against the other a priori admissible ones. 

Much controversy is found on this point in earlier literature, in par- 
ticular because it was thought that a reasoning back from a sample 
point to its true population would involve the notion of "inverse proba- 
bility." One often finds expressions such as "the most probable distribu- 
tion" from which a given sample may have been drawn. Such a 
statement, of course, implies a certain probability distribution of the 
hypotheses within Q?2. In most cases, however, such a model does not 
have much sense, because, when we draw a sample, we take it from a 
fixed but unknown member of Q?. The probability of any member of Q? 
being the true one, i.e., the one we sample from, is, therefore, either 0 
or 1, independent of what be the sample point obtained. 

On the other hand, if we establish a rule by which to reject or not 
reject a hypothesis, and if the decision is made to depend uniquely upon 
the location of a sample point, we may speak of the probability of our 
decision being right or wrong, because the decision-being a function of 
the sample point E-is then a random variable. 

Let us now formulate more precisely what is a test of a statistical 
hypothesis. Let Q? be the set of all a priori admissible hypotheses as 
to the probability law P(w) of the n random variables xi, x2, * * Xn, 
and let P(w) ? 0?, where wO is a subset of Q?, be the hypothesis, Hoy 
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to be tested. This means: We know for certain that, whatever be the 
sample point observed, the true probability distribution of the n ran- 
dom variables is one and only one member (fixed, but so far unknown) 
of the set Q?, and our hypothesis is that P(w) belongs to a more re- 
stricted set of distributions, co, within QO. The class w0 may contain 
only one single member (a simple hypothesis) or several members (a 
composite hypothesis). In the last case all members of co0 are treated 
as equivalent, we are not interested in distinguishing between them. 

Now, let W0 be a set of points in the n-dimensional sample space R., 
such that, whenever a sample point falls into Wo, i.e., E ? Wo, we 
reject the hypothesis Ho, otherwise not. Wo is then called a critical region 
(or more generally a critical set of points) for testing the hypothesis Ho, 
i.e., P(w) ? con, against the alternatives P(w) ? (0 - co0). A critical region 
and a test are evidently just two different names for the same thing. 

In particular cases a test of a hypothesis Ho might be decisive, namely 
in cases where there exists a subset W0 of the sample space which bas 
probability =1 according to Ho, but probability = 0 according to any 
other member of ?20. Then, by means of one single sample point, we 
could decide-with a probability= 1 of being correct-whether Ho were 
true or false, by rejecting Ho if and only if E e (Rn- Wo). Also, suppose 
that the set Q?2 of hypotheses H could be divided into a system of k 
disjunct subsets 010, 020, ... , 0, corresponding, one-to-one, with 
k nonoverlapping subsets W1, W2, **, Wk, of the sample space, 
such that P(WiJHcQ20) be =0 when i5j, but =1 when i=j, 
(i, j= 1, 2, * * , k). Then one single sample point would, at once, re- 
strict the set of a priori admissible hypotheses to one of these subsets 
Q,?. Such cases, although important, are trivial from the point of view 
of statistical theory. We may, therefore, assume the set Q? to be so 
reduced in advance, that any subset, W, of the sample space having 
probability = 1 according to one member of Q?2, has also a positive 
probability with respect to all other members of Q0. The application 
of a test as defined above will then always involve some risk of errone- 
ous decisions. 

Now, if the region of rejection Wo should be the whole sample space 
Rn (or the whole space minus a part of it that has probability zero ac- 
cording to any member of Q0), then we should always (or almost al- 
ways) reject Ho. This is evidently not what we want, because when we 
desire to test Ho, we imply that it might be correct, and in that case 
the test would constantly lead to wrong decisions. On the other hand, 
if P(Rn- Wo|I Ho) and P(Wo IHo)2 be both positive, we usually run a 
two-way risk of making an erroneous decision by the test. 

2 We recall that the general symbol P(XI Y) means: The probability of X 
given Y, or, the probability of X calculated under the assumption that Y is true. 
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First, suppose that the hypothesis is actually true and, at the same 
time, the sample point does fall into Wo (which is-by assumption- 
possible). Then we reject Ho, hence, we make an error. This is called an 
error of the first kind. 

Second, suppose that the hypothesis is actually wrong (i.e., one of the 
alternative hypotheses is the true one), and, at the same time, the 
sample point does not fall into WO. Then we do not reject Ho, hence, we 
make an error. This is called an error of the second kind. 

For any given size of the sample we can make the probability of one 
or the other of these errors as small as we please, by an appropriate 
choice of WO, but it is not possible to do so for both errors at the same 
time. We therefore have to make a compromise, depending upon the 
kind of risk we are willing to run, and this, again, depends upon the 
consequences which erroneous decisions may have in any particular 
case. 

The whole problem of testing statistical hypotheses, and also that of 
estimation, consists of deducing "best critical regions" Wo, on the basis 
of certain risk parameters, which, themselves, are given by some outside 
considerations, and are taken as data in the statistical theory. We shall 
now indicate briefly the Neyman-Pearson approach to the solution of 
this problem. The fundamental principles of this approach rest upon 
the distinction between the two kinds of errors described above, a dis- 
tinction suggesting itself by recognizing the simple fact that, when we 
desire to test a hypothesis, we imply that it might be wrong, and that, 
therefore, it is necessary to specify in what sense it might be wrong. 
The recognition and precise formulation of such elementary-appar- 
ently almost trivial-principles is often among the very greatest 
achievements of scientific thought. 

Let us first consider the simple case when co? consists of only one 
single probability distribution, say Po, and let the set Q?-O also con- 
tain just one single element, say P15-?Po. We want to test, on the basis 
of a sample point E, the hypothesis Hoy that the true probability dis- 
tribution is PO, the only alternative being that it is Pi. Let Wo be a 
critical region such that the probability P(Wo I PO) is exactly equal to a 
(say a = 0.05). a is called the level of significance, or also, the size of the 
critical region WO, and is an a priori chosen risk parameter. It tells us 
that, if we choose WO as a critical region for rejecting the hypothesis Hoy 
the probability that we shall reject the hypothesis when it is true (i.e., 
the probability of error of the first kind) is exactly equal to a. But 
there are in general many such different regions Wo of the same size a. 
Now, if the hypothesis is not true, i.e., if the true distribution is P1, 
we want, of course, to have as great a probability as possible of rejecting 
the hypothesis Ho, i.e., we want the probability P(Wo I P1) of E falling 
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into WO when P1 is true, to be as great as possible. This probability 
P(Wo| P1) is called the power of the test WO with respect to the alterna- 
tive P1. Let Wo* be that region of size a for which this power is a maxi- 
mum. We then obviously want to use this region Wo* as our critical 
region, rather than any other region of size a. Wo* is then called the best 
critical region for testing P = Po with respect to the alternative P = P1. 

Suppose now that we enlarge the set Q? - w0 to comprise a whole sys- 
tem of alternative probability distributions. Then, if Wo* above is at 
the same time the best critical region for testing P =Po with respect 
to every element of the set of alternative hypotheses, Wo* is called a 
uniformly most powerful test. In a few important cases it can be shown 
that such regions exist. But this holds only for certain types of hy- 
potheses tested against certain restricted sets of alternatives. And if no 
such test exists, we have to choose some critical region of size a which is 
"as powerful as possible" with respect to the set of alternative hy- 
potheses in question. And the choice of a "best" test will then be some- 
what more subjective. It might be that we have in mind a certain 
system of weights of importance for the errors of the second kind, for 
the various elements in the set of alternative hypotheses. For example, 
if the hypothesis to be tested is that a certain parameter, 0, in a proba- 
bility distribution (the form of which is khown) is equal to a specified 
value, 00, the possible alternatives being all other values of 0 from -o 

to + oc say, it might be that, for some reason, we should consider it 
more important to detect the alternatives 0>00 than the alternatives 
o < 00. The problem of introducing such weight functions has been dis- 
cussed by A. Wald.3 

Above we have assumed that the hypothesis to be tested was a simple 
one, but the general idea is readily extended to composite hypotheses, 
although the technical difficulties of deriving critical regions of the type 
discussed here become more serious. Even the problem of determining 
regions WO that have the same size for every member of the set wO to be 
tested may here present complicated mathematical problems, and 
sometimes no such region exists.4 

Whatever be the principles by which we choose a "best" critical re- 
gion of size a, the essential thing is that a test is always developed with 
respect to a given fixed set of possible alternatives Q?. If, on the basis 
of some general principle, a "best" test, or region, Wo' say, is developed 
for testing a given hypothesis P e wO with respect to a set, Q0, of a 

' A. Wald, "Contribution to the Theory of Statistical Estimation and Testing 
Hypotheses," Annals of Mathematical Statistics, Vol. 10, December, 1939, pp. 
299-326. 

4See, e.g., W. Feller, "Note on Regions Similar to the Sample Space," Statis- 
tical Research Memoirs, Vol. II, London, 1938, pp. 107-125. 
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priori admissible hypotheses, and if we shift the attention to another 
a priori admissible set, Q', also containing w0, the same general principle 
will, usually, lead to another "best" critical region, say Wo". In other 
words, if a test is developed on the basis of a given set of a priori ad- 
missible hypotheses, Q0, the test is, in general, valid only for this set, Q?. 
By extending the set of admissible hypotheses to include new alterna- 
tives without changing the critical region, one can always find alterna- 
tives such that, whatever be the fixed critical region chosen, its power 
with respect to some of the new alternative hypotheses is very poor. 
This is a more precise expression for such common phrases as: "What is 
the use of testing, say, the significance of regression coefficients, when, 
maybe, the whole assumption of a linear regression equation is wrong?" 
This is just the type of arguments we have discussed above. Usually, 
when we test the significance of regression coefficients, the alternative 
set of hypotheses, Q0, is only the system of regression equations of the 
same form, but with regression coefficients that are different from zero. 
Q? does not include other forms of regressions (although this might very 
well be done). 

In general, if a critical region WO for a given hypothesis Ho be de- 
veloped on the basis of a set, Q?, of a priori admissible hypotheses, 
and if the true hypothesis-instead of belonging to Q0 as assumed- 
actually belongs to Q- Q0 (i.e., the set complementary to Q0), we have 
lost the control of errors, originally ascribed to the test. It might, of 
course, be that the power of the test, even with respect to these hy- 
potheses "off the scheme," is still good, i.e., when one of these new 
alternatives is true instead of the hypothesis tested, the probability o;f 
the sample point falling into WO might be high. But this probability 
might also be very small, even smaller than a, which means that we 
should have an even smaller probability of rejecting the hypothesis 
tested when it is wrong than when it is correct. 

The requirement of a specification of the set of a priori admissible 
hypotheses before constructing a test forces us to state explicitly what 
we assume known beyond doubt, and what we desire to test. 

* * * 

The problem of estimation is the problem of drawing inference, from 
a sample point, as to the probability law of the fundamental probability 
set from which the sample was drawn. The problem of estimation is 
closely connected with the problem of testing statistical hypotheses, in 
fact, estimation may be considered as a particular form of testing 
hypotheses. 

Let xi, X2, ..., x,n be n random variables with the (unknown) proba- 
bility law P(w). Let it be known that P(w) belongs to a parametric 
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class of distributions, Q?, i.e., P(w) is known except for the values of a 
certain finite number of parameters 61, 02, O, k, say. We may write 
this as P(w) =P(wj 01, 02, O, k), or, for short, P(w| 0), where the 
function P is known. A sample, E, is drawn from one of the members of 
Q0, but we do not know from which. The problem is to draw inference 
from E regarding the corresponding values of the parameters 0. Let 
these true unknown values be 0, 0, 0 2 , ko. Any system of values 
of the parameters 0 may be represented by a point, 0, in the parameter 
space, i.e., a k-dimensional Euclidean space, where the axes represent 
the k parameters 0. The problem of estimation is to define a function 
which associates every point, E, in the sample space with a well-defined 
set of points 0 in the parameter space. If this function is such that to 
each point E in the sample space there corresponds one and only one 
point 0 in the parameter space, we speak of point-estimation. If, to each 
point E in the sample space, the estimation formula ascribes a region 
I(E) [or more generally a set of points I(E) ] in the parameter space, we 
speak of interval- (or set-) estimation. In the particular case of point- 
estimation I(E) contains only one point 0 for each E. 

The interval (or set) I(E) is, clearly, a random set, because it is a 
function of the sample point E. We may, therefore, speak of the proba- 
bility, ,B say, of a set I(E) covering the true parameter point 0?, and we 
may choose the value of ,B according to the amount of risk we are willing 
to take, say 3 = 0.95. Since we do not know the true parameter point 0?, 
/3 ought to be independent of 00, i.e., whatever be the true parameter 
point 00 of the distribution from which we draw the sample, the proba- 
bility P(60 ? II 00)5 should be the same. A is called the confidence co- 
efficient for the estimate of 00, and the corresponding I(E) is called a 
confidence interval (or, more generally, a confidence set) for the true 
parameter point. 

Now consider the set of all a priori admissible parameter points cor- 
responding to Q0. This set of parameter points may be considered as 
the set of all simple hypotheses contained in Q?, i.e., all hypotheses 
0 = 00, where 00 may be any point among the a priori admissible set of 
parameter points. (We now consider 00 as a variable point.) Assume 
that for every simple hypothesis 0 = 00, in the a priori admissible set Q?, 
we construct, by some principle, a "best" critical region Wo(60) of size a, 
as described above. Wo(60) is the region (or set) of rejection of 06=0. 
R- Wo(00) is, therefore, the region of nonrejection or, for short, the 
region of acceptance of 6=60, and its size is 1- a. Let 1- a = 3 = the 
confidence coefficient for estimating the parameter point by means of a 
sample point. Let E1 be any arbitrarily fixed sample point. Since we 

' When using the notation 00 ? I we should remember that 00 is the constant 
element, while I is the random variable. 
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assume that the true hypothesis is contained in Q?, it is reasonable to 
require that, in our system of regions of acceptance, Rn- Wo(0G), there 
should be at least one region such that E1 belongs to it. In general, 
E1 will be an element of a whole system of regions of acceptance. Con- 
sider all the regions of acceptance of size ,B, of which E1 is a member. 
To each region of acceptance, Rn- Wo(0G), corresponds a point in the 
parameter space, namely the point 0G representing the hypothesis 0G for 
which Wo(00) is a region of rejection. To the system of all the regions of 
acceptance of which E1 is a member, there corresponds, therefore, a set 
of parameter points, say I(E1). Since E1 was arbitrary and, therefore, 
might be any point E in the sample space, this defines a function I(E) 
for every E. This I(E) clearly has the properties of a confidence set for 
estimating the parameters 6 by means of a sample point E, because, 
whatever be the true parameter point 00, the probability that a sample 
point E falls into its corresponding region of acceptance is 1- a = 3 = 

constant, and whenever E falls into the region of acceptance for a- ?, 
then also 0 e I(E). The probability that I(E) covers the true parame- 
ter point, no matter what this is, is therefore equal to ,B. 

The estimation problem may be formulated more generally. Let 
Xl, X2, ... , xn, be n random variables with the probability distribution 
P(w), about which it is known only that it belongs to a certain a priori 
admissible set, Q?, of distribution functions. Q? may be considered as 
the set of all a priori admissible simple hypotheses. For each of these 
simple hypotheses let there be constructed a certain region of accep- 
tance, U, of size ,B, and let (U) be the family of all such regions corre- 
sponding to the set W. A sample point E1 is given. Let [U(E1) ] be the 
family of all those regions of acceptance of which E1 is a member, and 
let I(E1) be the set of all simple hypotheses (contained in Q?) which 
correspond to the system of regions [U(E1)]. Since E1 might be any 
point E, there corresponds an I(E) to every E. I(E), thus defined, is a 
confidence set with the confidence coefficient A, i.e., the probability that 
I(E) will contain the true member of Q?, no matter what this is, is 
equal to f3. 

16. General Formulation of the Problem of 
Testing Economic Relations 

The Neyman-Pearson theory of testing statistical hypotheses is 
purely abstract, like any other theoretical scheme. The question which 
interests us here is therefore: Does this scheme represent a useful in- 
strument by which to deal with the problem of verifying economic theo- 
ries? Can it help us to understand better the nature of these problems, 
and to reach practical solutions of them? I think these questions may be 
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answered very much in the affirmative. The following discussion will, 
it is hoped, support this view. 

We shall attempt to give a general, axiomatic, formulation of the 
problem of testing economic relations, using principles of the Neyman- 
Pearson theory. 

A. Data relevant to econometric research 
The objects of economic research are variations and covariations 

within groups of phenomena of economic life. Let K1, K2, * * X K., be 
such a group. K1 may, e.g., mean a certain type of consumption goods, 
K2 may denote the phenomenon called "price" of K1 etc. Each K is 
just the name of a certain category of real phenomena conceived of as 
more or less equivalent, and distinct from those in other categories. 
Many kinds of variations and shifting conditions may unfold them- 
selves within each such category. We are here interested in only 
such variations as are shown by a certain measurable characteristic 
of each K. Let these n measurable characteristics be denoted by 
xI, x2, * * , x., respectively, and let (Xi, X2ti, . . ., Xnti) be a set of 
values observed jointly for the n K's, ti indicating "observation at point 
of time ti," or simply observation No. i (t1, t2, * * * etc., need not be 
equidistant). Let 

(Xlti, X2ti, . . 
.) Xnt,)) 

(15.1) (Xit2, X2t2 . X Xnt2) 

(XltN, X2tN , * X XntN) 

be a system of N such joint observations. Each column in (15.1) repre- 
sents a series of measurements of "the same variable," e.g., a time se- 
ries. 

B. Fundamental assumption about the nature of economic data 
The nN values (Xit, X2t, . . . X Xnt), t = t1, t2, . . ., tN, in the system 

(15.1) of N value-sets, may be considered as a sample point E in the 
nN-dimensional sample space of nN random variables (Xlt, X2t, * * * Xn t), 

t= t1, t2, . . . X tN, with a certain joint integral probability law P(w). (w de- 
notes an arbitrary point-set in the nN-dimensional sample space.) 
What this assumption means is the following: Consider the situation 
before the sample (15.1) was drawn, i.e., consider the system (15.1) as 
nN empty cells. And consider the whole set of alternative systems, each 
of nN elements, which, a priori, might fill the nN cells. The above as- 
sumption amounts to assuming-as a fact or by a hypothetical con- 
struction-that, before the sample was drawn, there was a set of such 
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systems satisfying the requirements of a fundamental probability set as 
defined in Section 9. This assumption is extremely general, as is seen 
from the definition of a random variable in Section 9. 

It is indeed difficult to conceive of any case which would be con- 
tradictory to this assumption. For the purpose of testing hypotheses 
it is not even necessary to assume that the sample could actually be 
repeated. We make hypothetical statements before we draw the sample, 
and we are only concerned with whether the sample rejects or does not 
reject an a priori hypothesis. The above assumption covers also, as a 
particular case, the situation where, for certain cells in (15.1), there 
would actually be just one fixed system of numbers that could fill 
these cells, i.e., the case where-for some of the cells in (15.1)-certain 
fixed values of the corresponding x's have probability = 1 (i.e., they are 
stochastically constant). This is of importance in many economic prob- 
lems where some of the variables are considered as autonomously given. 

C. The formulation of a theoretical stochastic scheme 

There are two kinds of abstract schemes occurring in economic the- 
ory, namely, one type which we introduce merely as a matter of exercise 
in logical reasoning or as a model of an idealized economy (i.e., schemes 
for which a comparison with reality has no meaning), and another type 
which-although abstract-we think may have some bearing upon real 
economic phenomena. For our study here only the latter is relevant. 

In constructing schemes of this latter type we nearly always haye 
some real phenomena in mind, and we try to include in the scheme- 
in a simplified manner, of course-certain characteristic elements of 
reality. At the same time we realize that such schemes can never give 
a complete picture of reality. We must allow for certain discrepancies. 
In Chapter III we discussed how a stochastic scheme might be used for 
this purpose. Because of the very general definition of random varia- 
bles, stochastic schemes represent an extremely general class of theo- 
retical models. We shall, therefore, assume that the problem of testing 
economic relations consists in confronting certain specified stochastic 
models with a set of data (15.1). 

Let 
, , 

Xltiy X2t4, * * Xnti 

, , 

(15.2) Xlt2) X2t2 . 
. X 

Xnt2, 

X1eN, X2tN, , XntN, 

denote a system of theoretical random variables to be compared with 
the corresponding observed variables in (15.1). 
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Further, let 
fEltl If2fly . . 

.* Xfmtly 

(15.3) Elt2, E2t2, 

EltNy E2tN, . 
. 

M4N) 

be another system of mN random variables introduced in the theoreti- 
cal scheme as auxiliary random parameters, possessing certain specified 
joint distribution properties. (The E's may also be introduced as coun- 
terparts to some real phenomena. See Section 11.) 

Finally, let 

(15.4) al, 2 . . . X ak 

be a set of constants. 
Now we impose a system of restrictions, 

fti[X,Ity $lti_a, * Xl ]$tl; X2t,, X2ti-ly * X 2ti; *.*.* 

(15.5) xnti) Xnt,-1 
. . . 

) xnti1; (Xo); Ci, C2* C,k; 

Etij,E 2t1i . * *mtjO = ,l (i = 1, 2, , N), 

upon the quantities (15.2)--(15.4). Here fti is a specified function for 
each value of i, i = 1, 2, , N. (In particular all the f's might be the 
same, independent of t; then only the arguments of the function would 
change.) (XO) is a short symbol for a set of initial conditions, i.e., the val- 
ues of x jt (j= 1, 2, * * * , n), for t = to,L L1, t2, * * * . Such quantities may 
or may not enter into (15.5). If they do, we assume them to be constants 
having known values. 

(15.5) is, for each point of time, t = tl, t2, N, t, a stochastical rela- 
tion, defining, implicitly, one of the variables, say xi t,', as a function of 

(1) the previous values of that same variable, 
(2) the simultaneous and the previous values of the other variables x', 
(3) m random variables E. 

Let (15.5) be our economic theory to be tested, the random variables 
e having certain prescribed distribution properties. The principal task 
of economic theory is to make a fruitful choice of the forms f. 

In this general formulation, (15.5) with its associated assumptions 
about the E's may represent a static or a dynamic theory. Assume, as 
above, that each equation (15.5) can be solved for x'lti, i = 1, 2, . . , N. 
The theory is then static if (1) only variables x' for the same point of 
time ti enter into each of the equations (15.5), and, at the same time, 
(2) the n-1 random variables X'2ti, XS3ti, . *, x',t,, and the m random 
variables eit f2til I * , * . (i = 1, 2, * * , N), are assumed to be sto- 
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chastically independent of the previous values of the variables x' and 
the previous values of the variables E. Otherwise the theory is dynamic 
in the sense that "what happens at point of time t; depends upon what 
happened previously." 

(15.5) is, of course, an empty statement about the variables (15.2) 
unless we know something about the random variables e in addition to 
(15.5), for-whatever be the variables x'-we could define such vari- 
ables E that (15.5) would be fulfilled. We must make some additional 
statement (however weak) about the properties of the joint conditional 
probability law of all the variables E for given values of the (n-1)N 
"independent" variables, which we assumed to be X'2t, X'3t, , X'.t 
(t = tl, t2, , t N). When that is done, it follows from (15.5) that the 
joint probability law of all the variables x' in (15.2) can not be just any 
distribution, it must belong to a (more or less) restricted class of proba- 
bility laws. 

As an example, suppose that (15.5) were of the form 

(15.5') Xlt- alE2t,- lt, = 0 (i = 1, 2, , N), 

and suppose that the variables E were assumed to be distributed 
independently of the variables X2ti'. And let pl(Elt, 1lf1, . 

. ., E1tN) 

be the joint elementary probability law of the N variables E. Then 
it follows that, for given values of the variables X'2 ti, the variables 
xitli have the joint elementary probability law pJ(x'itl- alX'24t), 
(x'lt2- alx'2g2), , (x1tN- alx'2tN)]. And hence, whatever be the ele- 
mentary probability law, P2 say, of all the variables X'2ti themselves, 
the joint elementary probability law, p3 say, of the 2N variables x' 
must have the form p3= Pl- P2 

Thus, (15.5) together with any additional assumption made as to the 
distribution properties of the &'s, will imply that the nN-dimensional 
probability law of the nN random x' must belong to a certain restricted 
subclass, co say, of the class of all possible nN-dimensional probability 
laws. At the same time, this is also, clearly, all that our theory implies, 
so far as possible observations of the variables x' are concerned. [The 
equations (15.5) say, of course, much more about the variables x' and 
the variables e taken together, but-by assumption-there is no possi- 
bility of observing individual values of the E's. ] Now, if we add a new 
system of nN equations, namely, x=x', i.e., if we identify each theo- 
retical variable x' in the system (15.2) with the corresponding observed 
variable in (15.1), our theory leads to a statistical hypothesis, namely, 
the hypothesis that P(w) E co. We shall formulate this a little more in 
detail. 
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D. The formulation of (15.5) as a statistical hypothesis with respect to 
the probability law of the observable variables (15.1) 

Let ? denote a point in the mN-dimensional sample space of the 
variables e in (15.3). And let D(E ? v), where v is the argument of 
the set-function D, denote the joint conditional integral probabil- 
ity law of the mN variables e, given the values of the (n - 1)N variables 
x'2t, x'3t, , x'nt (t=t1, t2, * *, tN) (the "independent variables"). 
This distribution is at our disposal in formulating the theory. It, there- 
fore, belongs-by hypothesis-to a certain set, S say, of mN-dimen- 
sional probability laws. In case we have specified the distribution D of 
the variables e completely in our theory, S contains only one element. 

We shall consider the general case where the values of the parame- 
ters a in (15.5) are not fixed by theory, but are at our disposal, i.e., we 
are prepared to accept any values of the a's. Then the definition of S, 
and the restrictions (15.5), define a certain class, w say, of probability 
laws of the variables x'. This class X we could imagine to be obtained 
by the following process: 

Consider one single member D of the system S, and consider all pos- 
sible joint distributions of the variables x', subject to the restrictions 
(15.5), for an arbitrarily fixed system of values of the a's. Repeat this 
process for (1) all possible value-systems of the parameters a and (2) for 
every member of the system S. All the joint probability laws of the 
variables x' obtained in this way together form the class w. 

We are interested in whether P(w), i.e., the joint probability law of 
the nN observable variables x, belongs to w. The hypothesis to be tested 
is, therefore, 

(15.6) P(w) s co; admissible alternatives: P(w) e (Q-); 

where Q is the set of all nN-dimensional probability laws. 
This formulation of the problem of testing economic relations is very 

general. In order to develop nontrivial tests it is, however, necessary 
to impose further restrictions upon the sets Q and co (in particular, by 
restricting the set S of conditional probability laws of the random vari- 
ables e). We shall mention some important types of restrictions of the 
sets Q and w. 

(1) Restriction of the random variables e to variables following cer- 
tain simple probability laws, or restriction of the system S to a certain 
parametric family of distributions, or even to one perfectly specified 
distribution. 

(2) Restriction of the set of a priori admissible hypotheses to such a 
set, Q?, as the w defined above, i.e., to the set of all probability dis- 
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tributions that are compatible with (15.5) for at least one system of 
values of the parameters a, and then restriction of the set of probability 
laws to be tested to a particular subset, w& say, of this Q?, corresponding 
to one fixed system of values of the parameters a (e.g., test of signifi- 
cance). This means that we are sure-or that we accept without test- 
that the theory (15.5) is all right so far as the forms of the functions f 
are concerned. 

(3) Restrictions imposed upon the variables x' by some other rela- 
tionships in the economic theory besides (15.5). This is very often the 
case when we consider systems of economic relations, and it must be 
taken account of in formulating the set w0 above. 

An interesting and important question in this connection is the fol- 
lowing: Is a test of the hypothesis (15.6) also a test of the "correctness" 
of the form of the f's in (15.5)? 

First of all, what is a "correct" system of functions ft? A pre- 
cise answer can be given to this question, namely: Any system of 
functions f, which is such that [P(w)] E ((ft1, ft2, . . , ftp), where 
w(ft1, ft2, * . *, ftN), or, for short, c(f), denotes the set w (or w0) corre- 
sponding to that system of f's, is a correct system of functions f. There 
will, therefore, in general be an infinity of "correct" theories (15.5). 
In particular, there might be various different systems of f's which- 
together with various assumptions about the distribution properties of 
the E's-all lead to identically the same set of probability laws co, i.e., 
they are indistinguishable from the point of view of observations. This, 
of course, does not mean that all "correct" forms of theories are equally 
good, or "interesting," e.g., for prediction purposes. The "goodness" of 
a stochastical relation, if it be a "correct" one, will in general be judged 
from the properties of the random variables e which it contains. Usu- 
ally we want these errors to be "small," in some sense or another. 

Now, let w(fO, S) be a set of probability laws of the variables x', 
defined by a particular system, fO, of functions in (15.5) and a set S of 
e-distributions. Then, if a test Wo of the hypothesis P(w) ? w(fO, S) 
should have high power with respect to every alternative not contained 
in w(fO, S), the test Wo would, of course, also have a high power of de- 
tecting, in particular, a wrong choice of the forms f?. 

If we try, however, to test a hypothesis (15.6), the alternatives being, 
so to speak, "everything else" (i.e., the set of a priori admissible hy- 
potheses is Q), then, no matter what be the test chosen, there will 
always within this "everything else" be alternatives for which the 
power of the test is very poor. In case one of these alternatives were 
actually the true one, we should have only a very slight chance of 
rejecting the hypothesis tested. In all practical cases it is, therefore, 
necessary to be able to restrict, in advance, the set of admissible hy- 
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potheses Q? as much as possible, having at the same time strong reasons 
to believe that the true hypothesis is not outside this Q?. 

* * * 

We have not here gone into any technical details as to the actual 
construction of tests, the theory of which was described briefly in Sec- 
tion 14. Our purpose has been to show how an economist should formu- 
late testing problems for which he asks the help of a statistician. To 
give a more concrete illustration, however, we shall in the next section 
consider a simple, but rather important, example from economic sta- 
tistics, namely the problem of testing a time series for trend, assuming 
that its additional variations are random variables of a simple type. 

16. Example of Testing Hypotheses: A Simple Problem of Trend Fitting 

Let yt be an observable time series, where t= 1, 2, . . . , N, denote N 
equidistant, discrete points of time. Suppose we know, or believe without 
test, that the following model (where E means "expected value of") is 
true: 

(16.1) yt = kt + b + et (t=1, 2, , N), 

(16.2) E(yt I t) = kt + b (t = 1,2, 2 * , N), 

(16.2') E(et) = 0, E(et2) = a2 (independent of t), 

(16.3) P(Yt I t) = e-(12a)(yt-k 

a is assumed to be numerically known (for the sake of simplicity of our 
illustration in the following). 

Consider N populations (or universes) corresponding to the N fixed 
values 1, 2, . . . , N, of t. For each t, yt is normally distributed about 
the mean (kt+b) with variance a2. For each value of t we assume that 
we draw exactly one value of yt, such that these drawings are stochasti- 
cally independent. The sampling distribution of these N drawings is, 
therefore, 

P(Yly Y2y * * ,YN) 

(16.4) 1 [-1z (yt-kt-b)2] 
exp y-kt-b2 

(V2/~7r-.a)N 2a2 

means EN , throughout this section). 
All these things are assumed known, the only unknown elements in 

our set-up being the values of the constants k and b; i.e., we know that 
it is possible to choose k and b such that the observable series yt satisfy 
our model. 
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By the method of least squares [or by the method of maximum 
likelihood applied to (16.4) ] we obtain the following estimation formula 
for the parameter k: 

(16.5) Est. of k E t2 

where t and y denote the observed arithmetic means of t and y respec- 
tively. k is, of course, a random variable in repeated samples (each of N 
drawings, the t's being the same all the time). Using (16.1) we have 

6 (t-b)(kt + b + et- ki-b-) = E (t_ -et 
(16.6) fi = ---- = k + 

S(t_ 2 E(t-02 

Thus, E(k) =k, i.e., we have an unbiased estimate. We want to test the 
hypothesis that k = 0. What is the set of a priori admissible hypotheses, 
i.e., the set QO?? It is: The system of all probability distributions (16.4) 
obtained by letting k and b run (independently) through all values from 
- oo to + co, and no other alternatives. The hypothesis to be tested is 
that k=O, b being anything from - oo to + oo, i.e., the set co? is the 
system of all probability distributions obtained from (16.4) by putting 
k = 0 and letting b take, successively, all values from - oo to + oo . We, 
therefore, have a composite hypothesis to be tested. 

To test k = 0 we have to choose a critical region of rejection Wo in 
the N-dimensional sample space of the variables y such that the proba- 
bility of a sample point falling into WO, no matter what be the value 
of b, is equal to a (say 0.05) when the hypothesis k = 0 is true; and be- 
sides, the region WO should be such that the probability of a sample 
point falling into it when the hypothesis k = 0 is false is as great as 
possible, and independent of the value of b. 

Let us for this purpose consider the sampling distribution of the esti- 
mate k. From (16.6) it is seen that k is a linear function of the N inde- 
pendent normally distributed variables ei, E2, * * *, EN, the t's being a 
set of constants-by assumption. & itself is, therefore, also normally 
distributed with 

a2 
(16.7) mean = k, variance = (t - 

The distribution of i is independent of b, and we have 

(16.8) p(c) = V -exp [- Z(t2 k-k) 

And corresponding to our hypothesis to be tested, k = 0, we have 

(\ V = t-t2 r e(tb 2 12 
(16.8') po(k) - \/2 exp [ka 
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Let us consider the following two equal "tails" of this distribution 

(16.9) k < -K = ca and k > + K = + ca 

u (t_ U2 a (t - o2 

where c is a positive constant so determined that 
+K 

(16.10) 1 - po(k)dXi = a (= 0.05, say). 
-K 

The two intervals (16.9) together define a certain region of rejection 
W0 in the sample space of the variables y, because k is, by (16.5), a 
single-valued function of the y's. The probability-when the hypothesis 
k = 0 is actually true-that k should fall in either of the two intervals 
(16.9) is the same as the probability that the sample point falls into Wo, 
and this probability is exactly equal to a. On the other hand, what are 
the properties of this critical region if the hypothesis is wrong, i.e., 
if k #O? It has been shown that the region of rejection Wo corresponding 
to the two tails (16.9) has the following properties:' 

Whenever the hypothesis k = 0 is wrong, i.e., when k 5 0, the proba- 
bility that the sample point should fall into W0 (i.e., the power of the 
test) is > a, which means that the test is unbiased. And for any other 
unbiased critical region of size a the power is smaller. 

If we reject the hypothesis k = 0 whenever k falls in either one of the 
intervals (16.9) we thus have a best unbiased test of the hypothesis 
k = 0 corresponding to the level of significance a. 

The probability that k should fall into either of the intervals (16.9) 
when kO, i.e., the power of the test, can be calculated as a function 
of k directly from (16.8). This power-function-let us call it A(k)-is 
simply 

(16.11) ,B(k)=1- ex ex [---k k - )2dk) 

where K is given by (16.9). 
Let us, as an example, take N = 9, a = 1, a = 0.05, c = 1.96 (from tables 

of the normal curve). We then have 2; (t- )2=60. If we introduce these 
numerical values, and change the variable of integration by the trans- 
formation K=(1/a)0\)V (t[)2(k-k), (16.11) becomes 

1 + 1.+1.96- 60k 
(16.11') i3(k) = 1 - exp [- 2K2]dK. 

V\2/r -1.96-\60k 

Values of A(k) for different values of k then follow directly from tables 
of the normal distribution. 

6 See, e.g., Neyman, Lectures and Conferences on Mathematical Statistics, Wash- 
ington, 1937, p. 29. 
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In Table 1 are given the results for a few values of k. The smooth 
curve in Figure 3 represents the continuous power function 3(k). 

TABLE I 

the probability that we shall reject 
If the true value of k is k=0 by the test (16.9) (i.e., the 

power of the test) is 

k [:(k) 

0 0.05 (=a) 
?0.1 0.12 
?0.2 0.34 
?0.3 0.64 
?0.4 0.87 
?0.5 0.97 

'l ' l | I 1.0 I 

0.& G-Q.4) 

ft-0.3) oh. 0.3) 

-0.6 -05 -04 -0.3 -0.2 -0.1 0 OJ 0.2 03 0.4 05 0.6 

FIGURE 3.-The Power Function of the Test (16.9). 
(N=9, a=l, a=0.05, c=1.96) 

Horizontal axis gives values of k (k=O is the hypothesis tested; other values 
of k represent alternative hypotheses). 

Vertical axis gives values of ,8(k), representing the probability of k falling into 
the region of rejection (16.9) for the hypothesis k=0, when k is the true value 
of the parameter. 

a =0.05 represents the level of significance. 
The encircled points ((0) show the power of the same test (16.9) when the C's 

are dependent as defined by (16.12). 
This graph (the smooth curve) shows, for k F0, the probability of rejecting- 

correctly-the hypothesis k =0 when it is false. The further away from k =0 we 
get, the greater is the probability that we shall reject k =0. [8(k) is the probability 
of not making an error of the second kind, considered as a function of the true k. 
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Now we shall consider an example showing what happens if the alter- 
native which is actually true is not included in the set of a priori ad- 
missible hypotheses Q? which was the basis for the above test. 

One of the restrictions above was that the 's in the N observations 
were stochastically independent. This was taken as a known fact, and 
not as a hypothesis which might be right or wrong. Suppose that we 
were not justified in doing so. As an example, let us assume that, without 
our knowledge and while proceeding as if our original scheme were cor- 
rect, the actual series of e's is of the following nature: 

Let to, 41, ..., IN, be N + 1 normally and independently distributed 
random variables, each with zero mean and variance = that of the 
's above. And let us consider a new series of 's given by the formulae 

1 
(16.12) et = (t-1 + Qt (t =1, 2, .. * * N). 

Each of these new z's taken separately then has mean 0, and the same 
variance u2 as the former eseries. But et and et+1 are now positively 
correlated (correlation coefficient =-). 

Suppose now that we proceed as if we had to deal with the original 
e-series instead of (16.12). By (16.6) k is still a linear function of nor- 
mally and independently distributed variables, viz., 

11 (t - b(t-i + ~ 
(16.13) k = k + t/_ E (t - t-)2 

and, therefore, k is also- now normally distributed with mean = k, and 
the variance of E is now that of the linear function 

(16.14) (t (t-i + 

which gives 

(16.15) k LL 
(t_t.2]2[E (t-b2o2+ N-. 

Taking, as in the previous example, N =9, a =1, c = 1.96, we obtain 

1 1 
(16.16) -2 = (60 + 40) 

602 36 

and, therefore, in analogy to (16.11') we now get 

1 r +1.52-6k 

(16.17) B*(k) = 1- -1.52-6k xp -2 

A*(k) is the probability that ?-calculated by (16.5), the e's being as 
defined by (16.12)-falls into either of the two intervals defined by 
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(16.9), this probability being considered as a function of the parameter 
k. As examples the values of ,3*(k) for k=0, k= +0.3, and k= ?0.4 are 
plotted in Figure 3 (the encircled points). These values, as obtained 
from (16.17), are: ,B*(0) =0.13, ,B*(?0.3) =0.61, and 13*(?0.4)=0.81. 

What do these results show? They show that the test (16.9) for an 
alternative hypothesis (namely dependent e's) not included in Q?, may 
-incorrectly-reject the hypothesis tested (i.e., k = 0), when it is true, 
more frequently than assumed (here 13 per cent instead of 5 per cent). 
That is to say, we had actually constructed the test such that we should 
reject the hypothesis k = 0-when true-in only 5 per cent of the cases 
where the test is applied. But this no longer holds. The reason for this 
is easy to recognize: In order to make a = 0.05 in our first example (with 
independent errors) we had to fix a value of c such that the integral in 
(16.10) should be equal to 0.95. In the present case the integral over the 
same range [given by (16.9) ] is, of course, smaller than 0.95, because the 
variance of the k we now have is greater (namely 1/36 instead of 1/60). 
1 minus this integral is, therefore, greater than a= 0.05. 

Also, we thought that we should be rejecting the false hypothesis k = 0 
in 87 per cent of those cases where k = ? 0.4, while in fact we now do 
so only in 81 per cent of the cases, because, in constructing the test for 
the hypothesis k = 0, we did not take account of the possibility that 
the e's might be dependent. 

The hypothesis k = 0, as well as the alternative hypotheses about k 
in the last set-up, do not mean the same thing as in the first example 
with independent errors. In particular, the hypothesis tested (i.e., k = 0) 
is not the one we set out to test, because it now includes the possibility 
of the errors being dependent. In other words: Even though the hy- 
pothesis k = 0 might be true there is still something wrong with that case 
also-as compared with the hypothesis tested in the case of independ- 
ent errors-namely the correlation between the z's now present. It is 
interesting to note that the test above shows this to some extent, by 
rejecting the hypothesis k = 0 in 13 per cent, and not 5 per cent, of the 
cases where k =0 is actually true. This result, however, is not a general 
one. The opposite may occur in other cases. 

Of course, in the case above the mistake would not be so very bad, 
because it so happens that the power of the test is rather good also for 
the hypotheses outside Q? which we just have considered. And in many 
important cases this might happen; that is to say, even if we develop a 
test only with respect to a certain very restricted class of a priori ad- 
missible hypotheses Q?, this test might-just by sheer luck, so to speak 
-be good also with respect to a much wider class of alternatives. 

The example above illustrates, I think, a very useful method of pro- 
ceeding in testing economic relations: We define first a certain set of a 
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priori admissible schemes, go, containing what we feel strongly to be 
the most important alternatives, and being at the same time such 
that it can be handled without prohibitive technical difficulties. Then, 
later, if-for some reason or another-we become suspicious as to the 
completeness of this Q?, we may study the power of the test for certain 
outside schemes not contained in Q?. For instance, it might be that a 
certain hypothesis outside Q?, i.e., a hypothesis rejected a priori, would, 
if it nevertheless were the true one, have important consequences for 
our decisions. To see what risk we are taking as to this hypothesis by 
using a test that simply neglects the possibility of this hypothesis being 
true, we calculate the power of the test for this outside hypothesis. 

Of course, whatever be the test developed on the basis of a certain 
set, Q?, of a priori admissible hypotheses, it will always be possible to 
find hypotheses outside Q?, such that the power of the test with respect 
to these hypotheses is very poor; at least that is so if we want to have a 
test that is any good at all within Q?. To have some chance of reaching 
nontrivial conclusions we must assume a certain a priori knowledge, or 
be willing to take a certain amount of risk in order to restrict Q?. 
And the total risk involved in restricting Q?0 is one which cannot be 
evaluated in probability terms. The choice of an a priori admissible set 
Q? is, indeed, a matter of general knowledge and intuition. 

The discussion above gives also, I think, a clearer interpretation of 
the general phrase, "Suppose the whole formal set-up of the theory is 
wrong, what is the use of testing significance of coefficients, etc.?" As 
a matter of fact, this question is, strictly speaking, always justified 
when we try to explain reality by a theoretical model. But if we follow 
this attitude to its bitter end, we shall never be able to accomplish any- 
thing in the way of explaining real phenomena. 

17. The Meaning of the Phrase "To Formulate Theories 
by Looking at the Data" 

All models of economic theory, however abstract they may be, proba- 
bly arise from the consideration of some real economic phenomena. 
"Data" in the broad sense of empirical knowledge will, therefore, al- 
ways to some extent influence our formulation of theories about them. 

If we try to give only simplified and condensed descriptions of em- 
pirical cases, there is, of course, no risk in choosing a theory which "fits 
well." The risk comes in if we generalize, in the following sense: We 
specify an empirical class of phenomena (e.g., the class of all corre- 
sponding values of price and quantity sold of a certain commodity). 
We know empirically a certain number of members of this class. We 
form a theoretical class (e.g., a stochastic price-quantity relation) cover- 
ing in particular the known members of the empirical class. We hope 
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that the theoretical class will cover all members of the empirical class. 
To construct such theoretical classes is, indeed, the problem of inductive 
science. And it involves risk of failures, which are beyond our control. 
A general discussion of "right" or "wrong" in connection with such 
empirical, inductive processes would take us into metaphysics. 

But the phrase, "To formulate theories by looking at the data," has, 
among economic research workers, a narrower meaning, which it might 
be worth while to clarify. The common argument is as follows: Suppose 
we have a certain number of observations of simultaneous values of a 
system of economic variables. We have a broadly formulated economic 
theory about these variables, stating that there is some relation be- 
tween the variables, without specifying the form of this relationship. 
We try out a great many different forms of relations, until we find one 
which "fits the data" (in some sense or another). Now, if we finally 
find a form of the relation which "fits well," is this in itself any verifica- 
tion of the "goodness" of that relation as a theory? Is not such a for- 
mula only a trivial restatement of facts? 

Much discussion has taken place on this subject, e.g., in connection 
with the problem of testing business-cycle theories. For instance, a 
great many simplified dynamic models imply that each of the variables 
involved satisfies (apart from error terms) some linear difference equa- 
tion of a certain order, with constant coefficients. It is clear that we 
may reach this same result by starting from different fundamental 
models, i.e., we might construct a great many models that are very 
different as to their basic assumptions or the type of economic mecha- 
nism they describe, and yet they may all imply that the variables, 
separately, satisfy certain linear difference equations as described. 
Now, if the observed series show some rather regular cycles, such differ- 
ence equations may often be made to fit the series very well, by a 
proper choice of the coefficients. And if we accept this as a verification 
that the observed series actually satisfy such difference equations, we 
could say that the "correct" theory must belong to the class of models 
which lead to such difference equations. But we could not by this fitting 
alone pick out the "correct" theory from the class of admissible models. 
And if we choose one particular model, the fact that the corresponding 
difference equations in each variable may be made to fit the data gives 
no guarantee that just this model is the "correct" one. It is, therefore, 
generally argued that such good fits of "final" equations are not worth 
much from the point of view of verifying theories. 

This argument, however, does not quite cover the real trouble point. 
In fact, if we could establish that the observed variables satisfied very 
closely a certain system of linear difference equations (say), we should 
have a strong and very useful restriction upon the class of a priori ad- 
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missible theoretical models. In general, whenever we can establish that 
certain data satisfy certain relationships, we add something to our 
knowledge, namely a restriction of the class of a priori admissible hy- 
potheses. The real difficulty lies in deciding whether or not a given rela- 
tion is actually compatible with the data; and the important thing to 
be analyzed is the reliability of the test by which the decision is made, 
since we have to deal with stochastic relations and random variables, 
not exact relations. 

From this point of view there is, therefore, no justified objection 
against trying out various theories to find one which "fits the data." 
But objections may be made against certain methods of testing the fit. 
Let us examine this a little closer. 

Consider a system of observable random variables, as in (15.1), and 
a relation to be tested, like (15.5). The theory defines a class, o? say, 
of probability laws, and we want to test P(w) e wO. Now we have 
seen that, in order to develop a test of this hypothesis, we have to de- 
fine a set, Q?, of a priori admissible hypotheses. Let (co) be a system 
of different sets w0, corresponding to different relations to be tested, 
and such that each w? is contained in Q?. For any one of these sets wO 
we may test the hypothesis P(w) ? wO, the set of a priori admissible 
hypotheses being constantly the same, namely Q?. It is clearly irrelevant 
how we happen to choose the hypothesis to be tested within Q?. In par- 
ticular, the hypothesis might be one that suggests itself by inspection 
of the data. This is perfectly legitimate as long as the set Q? of admissible 
alternatives is a priori fixed and remains so. For then we can calculate 
the power of the test used, and see what risk we run if we accept the 
hypothesis tested. What is not permissible is to let Q? be a function of 
the sample point. Because then the test no longer controls the two types 
of possible errors in testing hypotheses. If Q? be fixed on the basis of a 
sample point, and a test developed with respect to this set of admissible 
hypotheses, we have no idea whether the true hypothesis is actually 
contained in Q? or not. We should have the untenable situation that 
the method of testing would itself be varying at random from one sample 
to the other. 

The essential thing is, therefore, not the way in which we choose the 
hypothesis to be tested. Essential is what we know or believe to be the 
class of a priori admissible hypotheses, and what power our test has of 
rejecting the hypothesis tested, if a "really different" one among the 
alternatives be true. 



CHAPTER V 

PROBLEMS OF ESTIMATION 

In Section 14 we described the general problem and the general prin- 
ciples of statistical estimation. More specific estimation problems arise 
in various fields of application. In the following we shall discuss a prob- 
lem which is particularly relevant to economic research, namely that 
of estimating parameters in systems of stochastic equations. 

A most dangerous-but often used-procedure in this field is to "fit 
each equation separately" without regard to the fact that the variables 
involved are, usually, assumed to satisfy, simultaneously, a number of 
other stochastic relations. If that is done, it is afterwards almost sheer 
luck if we have not created inner inconsistency in the system as a 
whole, such as, for instance, the assumption that some of the variables 
in one equation remain constant in repeated samples, while-because of 
another equation in the system-this is impossible. We shall illustrate 
this by an example later (see Section 21). 

Even if no such inconsistency is created, the procedure of "fitting 
each equation separately" usually does not give the most efficient esti- 
mates of the parameters. For additional information about the parame- 
ters in one equation may be contained in the fact that, simultaneously, 
the variables satisfy another equation. And, what is even more impor- 
tant, we may fail to recognize that one or more of the parameters to 
be estimated might, in fact, be arbitrary with respect to the system of 
equations. This is the statistical side of the problem of autonomous rela- 
tions, which we discussed in Section 8. It may be described in words 
as follows: 

Suppose that a certain set of economic variables actually satisfies a 
system of (static or dynamic) equations, each of which we expect to 
have a certain degree of autonomy, so that we are interested in measur- 
ing the constant parameters involved (e.g., certain elasticities). From 
this equation system we can, by algebraic operations, derive an infinity 
of confluent systems. Suppose that, in particular, it is possible to derive 
an infinity of new systems which have exactly the same form as the 
original system, but with different values of the coefficients involved. 
(Usually this means that the number of parameters of the equation 
system may be reduced, as explained in Section 19.) Then, if we do not 
know anything about the values of the parameters in the original equa- 
tion system, it is clearly not possible to obtain a unique estimate of 
them by any number of observations of the variables. And if we did 
obtain some "estimate" that appeared to be unique in such cases, it 
could only be due to the application of estimation formulae leading to 

-84- 
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spurious or biased results. For example, the question of deriving both 
demand and supply curves from the same set of price-quantity data 
is a classical example of this type of problems. 

This question (in the case of linear relations known as the problems 
of multicollinearity) is of great importance in economic research, be- 
cause such research has to build, mostly, on passive observations of facts, 
instead of data obtained by rationally planned experiments (see Chap- 
ter II). And this means that we can obtain only such data as are the 
results of the economic system as it in fact is, and not as it would be 
under those unrestricted hypothetical variations with which we operate 
in economic theory, and in which we are interested for the purpose of 
economic policy. Considerable clarification on this point has been 
reached in recent years, following the pioneer work of Frisch.- 

In the following we shall see that the investigation of this problem of 
indeterminate coefficients, as well as other questions of estimation in 
relation to economic equation systems, all come down to one and the 
same thing, namely, to study the properties of the joint probability distri- 
bution of the random (observable) variables in a stochastic equation system. 

18. General Formulation of the Problem of Estimating 
Parameters in Systems of Economic Relations 

We shall discuss one general class of static systems and one general 
class of dynamic systems. 

A. Static systems 
Let us denote by j-, t2j, , * * , * nj (j1= 2, * , N), N 

"true" measurements of n economic variables. The subscript j indicates 
"observation No. j." The actual measurements of these variables might 
(and usually will) be subject to errors of measurement proper. Let the 
corresponding actually observed variables be xii, defined by 

(18.1) xii = Gii(tij, wi,) (i = 1, 2, . .. , n; j = 1, 2, . .. , N), 

1 R. Frisch, "Correlation and Scatter in Statistical Variables," Nordic Statisti- 
cal Journal, Vol. 1, 1929, pp. 36-102; "Statistical Correlation and the Theory 
of Cluster Types" (joint authorship with B. D. Mudgett), Journal of American 
Statistical Association, Vol. 26, December, 1931, pp. 375-392; Pitfalls in the 
Statistical Construction of Demand and Supply Curves (Ver6ffentlichungen der 
Frankfurter Gesellschaft fiir Konjunkturforschung, Neue Folge, Heft 5), Leipzig, 
1933, 39 pp.; Statistical Confluence Analysis by Means of Complete Regression 
Systems, Publication No. 5 from the Institute of Economics, Oslo, 1934; "Sta- 
tistical versus Theoretical Relations in Economic Macro-Dynamics" (Mimeo- 
graphed Memorandum prepared for the Business Cycle Conference at 
Cambridge, England, July 18-20, 1938, to discuss J. Tinbergen's Publica- 
tions of 1938 for the League of Nations). See also J. Marschak, "Economic 
Interdependence and Statistical Analysis," in Studies in Mathematical Economics 
and Econometrics, in Memory of Henry Schultz, Chicago, 1942, pp. 135-150. 
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or, when solved for -qij, 

(18.1') 77ij = gij(xij, ti,), 

where -tij are random variables characterizing the errors of measure- 
ment, and where Gi% (and gij) are certain known functions. We introduce 
these functions Gij for the following reason: If we wrote just 

(18.2) xij = ,ij + error, 

the distribution of the errors would in general depend upon tij. If this 
be the case we assume it to be possible to write the error part as a known 
function of qij and a new random variable, namely -qij, which is sto- 
chastically independent of tij (and also, of course, independent of thk 

when h, k # i, j). These transformations are expressed by the functions 
Gij in (18.1). This leads us to 

Assumption 1: The nN random variables qij (i=l, 2, **, n; 
j=1, 2, . .. , N), have a joint elementary2 probability law 

(18.3) p1(7tll, * *, 71nN; 'Yll 7Y2, * * Yq) 

which is known, except-perhaps-for the values of q parameters 
Y1, . , y'q, and which is independent of the variables tij and the varia- 
bles e defined below. 

Assumption 2: The (n-m)N quantities Sm+1, * * nj (j=1, 
2, , N; m<n), are considered as constants in repeated samples. 
The economic meaning of this is that these variables are autonomous 
parameters fixed by forces external to the economic sector under con- 
sideration.3 

Assumption 3: The mN quantities (1, * * , ,q (j=1 2, . . . , N) are 
random variables ("dependent variables") in repeated samples, and are 
known to satisfy m stochastical equations, 

(18.4) fi[411, 421, * * 
. . . 

mj; 4m+i,j, 
. . . X nj; aly a2, . . . 

, ak; 

fl1y E2jy~ 
. . 

Ehij =0 

(h > m; i= 1, 2, m; j = 1, 2, N), 

where al, a2, . . . , ak, are k unknown constants, and where elf, e2j, *, Ehj 

(j= 1, 2, * * *, N) are hN random variables. Here al, a2, * * , ak mean 
all the unknown constants in the whole system of equations (18.4). 

2 For the sake of simplicity we restrict ourselves, in this and the following 
sections, to cases where the elementary probability laws are assumed to exist. 
However, in point of principle, there would be no difficulty in reformulating our 
statements on the basis of integral probability laws. 

3 This assumption might, if it be desirable, be replaced by the assumption 
that the autonomous i's are themselves random variables. That would cause only 
small changes in the subsequent formulations. 
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There might actually be only a few of them present in each of the m 
equations. And similarly for the h e's. 

(18.4) represents an economic theory when certain restrictions are 
imposed upon the distribution of the e's characterizing the stochastical 
model. 

Assumption 4: The hN random variables el;, .2j, * * . 
I hj (j=1, 

2, * , N) have a joint elementary probability law 

(18.5) P2(flly 
.. * *, hN I {m+l,ly 

.. * * ,(N; 01) 02) * Or) 

(i.e., the conditional distribution of the hN e's, when the autonomous 
('s are given), which is known, except-perhaps-for the values of r 
parameters ,13, * * *, Or. By introducing a considerable number of 3's, 
P2 may be made to comprise a wide class of distributions. 

The problem is: To estimate the values of al, a2, . ., a.k, on the basis 
of a sample point (x11, x21, * , xn1, x12, x22, . , xn2, X, XL, X2N, 

* * * XnN) in the nN dimensional sample space of the observable varia- 
bles x. And in order to do this it may, or may not, be necessary also 
to estimate the parameters 7 and ,3 in (18.3) and (18.5). We shall now 
see that this problem is a problem of statistical estimation as described 
under Section 14. 

From the mN equations (18.4) we may (under certain conditions for 
solvability) express mN of the hN e's as functions of the mN random 
variables cii, * * and the (h - m)N remaining e's. These functions 
will, in general, involve the parameters a and the (n - m)N autonomous 
i's. Introducing these expressions for mN e's into (18.5), multiplying 
by the Jacobian of the transformation, and integrating over the 
(h - m)N remaining e's from - oo to + oo , we obtain the joint elemen- 
tary probability law of the mN ("dependent") variables cii, *, {mN. 

Let this probability law be 

(18.6) PN , P2 ... P an] 

Oly 02y * 
- 

* X Or; {m+l ,ly 
. . . 

X {nN ] 

This is the conditional distribution of the mN random variables 
t11, * * *, {mNN for given values of the autonomous i's. By assumption, 
this distribution is independent of the variables v defined by (18.1'). 
Therefore, the joint distribution of (ell, * , nmN) and (71, 77, nN) 

is equal to 

(18.7) Pl P3. 

Introducing the transformations (18.1') in (18.7) and integrating the 
result with respect to the mN random variables o * mN from-o 
to + oo, we obtain the joint elementary probability law of the nN ran- 
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dom variables xtj (the observed variables). Let this probability law be 

44xu,t * , X,xf j {m+1, l} * nN; 

(18.8) 
?a12 

.. * *a (k; fl12 .. * o r; tY1) 
.. * TAq 

We can now say: Our economic theory, so far as the observable varia- 
bles x are concerned, is indistinguishable from (and it may even be 
equivalent to) the statement that the observable variables x have the joint 
probability law (18.8), where 4) is a known function. And the problem 
of estimating the unknown parameters is reduced to an ordinary prob- 
lem of statistical estimation. 

If, in particular, all the variables be observed without errors of meas- 
urement, our economic theory would be expressed by (18.6). 

If, in particular, all the autonomous {'s be measured without errors, 
we should-instead of (18.8)-have4 

188)1(X11 
... * *XmN j {m+l,l, * * - a {nN; 

(18.8') 
a,, * * * ahk; 1ly .. * * Or;'Yf ... X * }tQ% 

that is to say, a distribution with only mN instead of nN random vari- 
ables x. 

In (18.8) the (n-m)N autonomous ('s are unknown parameters 
which it might or might not be necessary to estimate in order to esti- 
mate the a's. 

Clearly no more complete description of the interconnections be- 
tween a certain number of random variables can be given than that 
which is contained in their joint probability law. If, therefore, two differ- 
ent formulations of an economic theory lead to identically the same joint 
probability law of the observable random variables involved, we can 
not distinguish between them on the basis of observations. (But the theories 
may not be equivalent in certain other respects.) 

The joint probability law of all the variables covers also the particu- 
lar case where the set of random variables can be split up into independ- 
ently distributed subgroups of variables with different parameters to be 
estimated occurring in the distribution of each subgroup. And in all 
other cases the joint probability law of all the variables contains more 
information than that obtained from the probability laws of subgroups 
of variables. It is, therefore, clear that the joint probability law of all 
the observable random variables in an economic system is the only gen- 
eral basis for estimating the unknown parameters of the system. 

4 Here 'ye' denote the parameters in an mN-dimensional distribution instead of 
the nN-dimensional distribution (18.3). 
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B. Dynamic systems 

We shall consider the following general type of dynamic economic 
systems (making similar assumptions to those above): 

Let V1(ti), 62(ti), . , (t ) n * * ,(ti) be n time series defined at 
the points of time 

(18.9) tN) tN-_) 
. . . tl, toy t-ly t_ 2, y 

For the moment we shall neglect the problem of errors of measurement 
proper. 

The (n-m) series {.+I(ti), *, (t.), are assumed to be autono- 
mous variables, they are assumed to remain fixed in repeated samples. 

For each point of time (18.9) the quantities t1(t,), , (^(tj) are 
random variables defined implicitly by a system of dynamic relations 
of the type 

ti(ti) = Ft,i'l [ti(t,), t1(ti_,), .. * ;6(ti)y 62(4-1),***; 

ti(ti-1) , tj(ti-2) 
- ' * *; - * ; {mQ (ti)Xm(ti-1), *** 

( 18. 10) tm+1 (ti) X tm+1 (4t-1) X * * *; * ; tn ( ti) X t(ti-l))X*** 

011) (X2, . . . 
, ak; f 1tv f2fiy . . .* Xhti ] 

(i = 1, 2, ., N;j = 1, 2, ,m; h > m). 

Or, expressed in words: Each of the "dependent" variables 
ti(ti), * - , t(ti), is a function of (1) the previous values of that 
same variable and (2) the simultaneous and the previous values of 
the other n-1 variables. The m functions Ft,(D may be different for 
each point of time ti, but they have known forms. 

The system (18.10) involves, altogether, k unknown constants 
al, a2, a, k, some or all of which might be lacking in any particu- 
lar one of the equations. For each point of time t, the system involves, 
altogether, h random variables e, which have certain known distribu- 
tion properties. We refer all these h random variables e to the same 
point of time as that for the variable to the left in (18.10), although 
the actual events from which they emerge might take place at different 
points of time. This is merely a simple transformation of variables in 
the joint probability law of all the e's. If there happens to be func- 
tional relationship between the e's at two different points of time (e.g., 

=, t,ers._), the dimensionality of the joint distribution of all the 
hN e's can be correspondingly reduced. 

(18.10) gives, altogether, mN equations. From these equations we can 
(under certain conditions for solvability) express the mN random vari- 
ables {1(ti), * * *, ,(t,) (i= 1, 2, * * , N) as functions of: (1) initial 
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conditions, i.e., all (or some) of the values of {1(ts), - - *, &,(ti) for 
i=0, -1, -2, -..-; (2) the values of the autonomous variables 
(m+i(ti), ***, ((ti), for i= 1, 2, , N; (3) the hN random variables 

(lt, ** , (t,(i = 1 2,*^ , N). 
We shall assume the initial conditions to be given and constant in 

repeated samples. For short we denote the whole set of initial condi- 
tions by (tO) 

Let 

(18.11) P2 I[ltl, . . . EhCh 1 |m+l(tl), . . . , (tN) (O); 1 P2, , * 3r 

be the joint elementary probability law of all the hN random variables e 

for given initial conditions of the t's and given values of the autonomous 
Vs. (p2' might or might not actually depend upon these quantities.) 
The ,B's are parameters which might or might not be known. 

Since the mN random variables (1(ti), . . *, m(ti) (i= 1, 2, . . ., N), 
can be expressed as functions of the random variables e, we can derive 
the joint distribution of the mN random variables t1(ti), .. * , (m(t ) 
(i= 1, 2, * * *, N) in exactly the same manner as was discussed under A 
above. Let this probability distribution be 

(18.12) P3 [61(t1) 
... 

, (m(tN) 
I tm+l(tl)y 

. i 
WtnN); 

(t?); ai, * * * , ak; f1 *** p] 

If the measurements of the t's (but not those of the initial condi- 
tions) are subject to errors, we have an additional problem exactly 
similar to that discussed for static systems. 

The problem of estimating the parameters in a dynamic system of 
the form (18.10) is, therefore, reduced to the problem of estimating the 
parameters of an mN- (or nN-) dimensional elementary probability law, 
by means of a sample point associated with this probability law. 5 

This way of condensing the statements implied in a system of sto- 
chastic relations may be extended to more general classes of economic 
schemes. And this procedure is not only convenient but, I think, neces- 
sary, if we want to make sure that the various assumptions made about 
the distribution properties of the random variables involved do not 
lead to inner contradictions, like those we mentioned in the introduc- 
tion to this chapter. 

* * * 

We are now in a position to formulate precisely the two fundamental 

b For explicit estimation formulae and confidence limits, etc., in the case of a 
system of linear stochastic difference equations see the article by H. B. Mann 
and A. Wald, "On the Statistical Treatment of Linear Stochastic Difference 
Equations," ECONOMETRICA, Vol. 11, July-October, 1943, pp. 173-220, in par- 
ticular, Part II, pp. 192-216. 
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problems of estimation in economic research, namely (1) the problem of 
confluent relations, and (2) the problem of "best estimates": 

I. The problem of confuent relations (or, the problem of arbitrary pa- 
rameters) 

If two stochastical equation systems lead to the same joint proba- 
bility law of the observable random variables, they are indistinguish- 
able (on the basis of observations). In particular, the systems might be 
such that they differ only with respect to the values of the (unknown) 
parameters involved. The problem of arbitrary coefficients is, there- 
fore, included in the following general mathematical problem: Let 

P(X1 X2 ... * XJ 81, 02,** ; Z1, Z2,*** X Zr) 

be a function of s independent variables x1, X2, . . . X, involving K un- 
known parameters 0, and r known parameters z. Let 010, 020, , 0% or, 
for short, 00, be a point in the K-dimensional parameter space of the 0's. 
Does there, or does there not, exist at least one parameter point 0' 
(5$ 00), such that 

(18.13) p(xI, Xs x 010, * * K; Z1 
. . 

Zr) 

- P(X1Y * * * Y XsI | l OKI ***X ; Z1, ***Kzr) 

for all values of the variables x? The answer to this question depends 
upon one or more of the following things: 1. The form of the function p. 
2. The parameter point 00. 3. The values of the known parameters z. 

If (18.13) be fulfilled, and if 00 be the "true" parameter point, then, 
no matter how many observations we have of the variables x, there is 
no unique estimate to be obtained for 00, because we cannot then dis- 
tinguish between 00 and 0'. (The well-known problem of "multicolline- 
arity" is, of course, included in this formulation as a very special case 
of the arbitrary parameter problem.)6 

II. The problem of "best estimates" 

Let 

(18.14) y = p(xl, x2, * , xs 01, 02, . . X OK; Zly Z2, . . . Zr) 

be a parametric family of joint elementary probability laws of s ran- 
dom variables xi, x2, --, x,, involving K unknown parameters 
01, 02, . . . , OK. If, for given values of the known parameters z, there 
be a one-to-one correspondence between the parameter points 0 and 
the members of the K-parametric family (18.14), and if 00 be the true 

6 Cf. the discussion by Mann and Wald on the problem of whether to deal 
with the "reduced" equations or the "original" equations, op. cit., pp. 200-202. 
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parameter point, what is the best estimate of 00 to be obtained from a 
sample point (xl, x2, x,)? 

* * * 

The problem II is-at least in point of principle-a straightforward 
problem of statistical estimation, and there is no need, nor justification, 
for a separate discussion of that statistical problem here. 

The same could, of course, also be said about problem I. It is a prob- 
lem of pure mathematics. This problem, however, is of particular 
significance in the field of econometrics, and relevant to the very con- 
struction of economic models, and besides, this particular mathematical 
problem does not seem to have attracted the interest of mathema- 
ticians. In the following sections we shall, therefore, develop some 
mathematical tools of analysis for this particular purpose. 

19. On the Reducibility of a Function with Respect to Its 
Number of Parameters 

Let 
(19.1) y = f(Xl, X2, , X,; 01, 02, . , 0) 

be a real function of s real independent (i.e., not functionally related) 
variables xi, x2, , x8, involving K parameters 01, 02, O*, . [E.g., 
f might be the function (18.14) for fixed values of the z's.] Let 00 de- 
note a point in the K-dimensional parameter space of the 0's. And let 
S(00) be the corresponding set of all points (y, xl, x2, * * *, x.) in the 
(s+ 1)-dimensional variable space, that is to say, the set of all points 
(y, xl, x2, ... *, x) defined by (19.1) when 0= 00. Let 0' denote another 
parameter point $00, and let S(0') be the corresponding set of points 
(y, xl, x2, . , x.). If there exists at least one parameter point 0' $00, 
such that 

(19.2) S(00) = S(W), 

or-what amounts to the same-such that 

(19.3) f(xl, x2, . *, xs; 010, 020, * O 
0') 

_f(Xl) X22 
... 

2 Xs; 01 11 02 
1.. 

) OKI) 

identically, for all values of the variables x, we shall say that the pa- 
rameter point 0 has (a certain amount of) arbitrariness with respect to 
the set S(00). 

We may here distinguish between the following two cases: 
(A): There exists a finite neighborhood of the point 00 such that 

within this neighborhood there is no point 0' $00 satisfying (19.3), 
while outside, or on the border of, this neighborhood there may be one 
or more points 0' satisfying (19.3). 
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Example 1. 
y = 012x1. 

Here, if 01 = 010>0 there is no point 01'S 1O in the range 01> - 010 that 
satisfies (19.3), while, in the range 01? - 010, there is just one point 01' 
satisfying (19.3), namely 01' =-010. 

Example 2. 

y = 01 sin (02 + 03Xl). 

Here, if 00 be a parameter point, there are no parameter points in 
the immediate vicinity of 00 satisfying (19.3), but there is an in- 
finity of isolated parameter points 0' satisfying (19.3), namely 01'= 010, 

02'= (02+22rn), 03'= 030, n= 1, 2, 3, . . . ad inf. 
Example 3. 

y = v(0l)xi; v(e1) = (tol + 01+1)- 2[l 01-1 + (01 -1)]. 

Suppose that 01?=2, then v(010) = 1. Now, if 01>2, then v(01) <1, and 
no point 01'>2 will satisfy (19.3). Next, if 2>01>0, then v(01)>1; 
therefore no points 01' such that 2>01'>0 will satisfy (19.3). But if 
01?0, then v(01)=1; hence, all points 01'<O will satisfy (19.3). 

(B): If a finite neighborhood of 00 be chosen, no matter how small, 
there are points 0' ?00 in this neighborhood, satisfying (19.3). 

Example: 

y = (01 + 02)X1 + 03X2. 

We shall now derive certain general conditions under which (A) or 

(B) will occur. 
For this purpose we consider the function f in (19.1) as a function 

of S+ K independent variables, xi, x2, * * *, Xe, 01, 02, .. . 2 OK. We as- 
sume, throughout the rest of this section, that 

(1) f is defined over a certain domain Dx of the s-dimensional x-space, 
and over a certain simply connected region De of the x-dimensional 
parameter space, and is a single-valued function for every point x e Dx 
and for every point 0 e Do. 

(2) For every point x e Dx, and for every interior point 0 of De, f has 
continuous first-order partial derivatives af/a0s (i = 1, 2, X K) (i.e., 
continuous in the 0's). 

Definition: The function f(x1, X2, , x.; 01, 02, . . . X 0X) is said to 
be v-fold reducible (K ? > 0) at the parameter point 00, where 00 is an 
interior point of De, if there exist K - V functions ul(0i, 02, * * * X 0), 

u22(O1l 02, . . . 0 K), . . . , uK-Y(01l 02, . . . , 0X), not depending upon the 
point x, and a function f(x1, x2, * , x,; U1, u2, . . *, u,v), having the 
following properties: 
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(a) f(x1, X2, , Xs; 01l 02, . IOK) -f(x1, X22 , Xs; U1, U2, , UK-,) 
for every point x ? D., and for every point 0 in an arbitrarily small but 
finite neighborhood of 00. 

(b) auil/a0 (i= 1, 2, K-V; j=l, 2, * , K) exist and are con- 
tinuous for every point 0 within an arbitrarily small but finite neigh- 
borhood of 00. 

(c) The Jacobian matrix 9(u1, U2, U*, U 9)/O(01, 02, * *X) iS of 
rank K-V at 0= 00. 

If a function f has these properties at a parameter point 00, then, 
clearly, there exist infinitely many points 0' in the neighborhood of 00, 
such that (19.3) is satisfied, for if ul, u2, * * *, uK, be fixed, v parameters 
0 may be chosen arbitrarily in a certain neighborhood of 00 without 
changing the value of f, whatever be x e Dx. 

THEOREM 1. If a function f(x1, X2, * * * X x,; 01, 02, . . . I O,) is v-fold 
reducible at the parameter point 00, there exists a system of functions 
Xij(012 02, . . . OXc) (i= 1, 2, . , K; j= 1, 2, , V) that are independ- 
ent of the point x, and continuous in the neighborhood of 00, such that 

X11, X21, . . . 

(19.4) X12, X22, ... X2 

Xl*, X2 . . XpX 

is of rank v at 0= 00, and 

1f O9f Of 

Olj 
~ 

X2j ae2 + ***+ Xj 88-0 ( = 1,2...V aO, 0a02 00KOI 

for all points x e D., and for all points 0 in an arbitrarily small but finite 
neighborhood of 00. 

Proof: Since the Jacobian matrix 9(u1, U2, * K*-)/(0l, 02, . . . 
I OK) 

is of rank K - v at 0= 00, it contains at least one (K - v)-rowed 
determinant that is not zero at 0 = 00. Since the numbering of 
the 0's is arbitrary, we may, without loss of generality, assume that 
9(U1l U2 * , UK)/1(0l, 02, . . 

* 0,.-,) is of rank K-V for 0= 00. Then 
the system 

u1(01, 02, . . . I OK) = Ul, 

(19.6) U2(01, 02, 
. . . 

, 
OK) = 

U2, 

UK,(0l( 6X2, . . 
2 OK) = UK_t 
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has a solution 

(19.7) 0, = 4),(u1, u2, * , u,., @XP1 * , 0X) 
(19.7) Oi(i=1lyUy..yUK,yO-+l ,2,,K) 

(i = ly 2, ... ., K - V) 

which is unique in a certain finite neighborhood of 0 = 00, and such that 
aoi/oui (i = 1, 2, *..., -KV; j=1, 2, *, K-V) and O4j/O0k 
(i=1, 2, K * *, K-V; k=K-V+1, * K) exist and are continuous 
functions of ul, u2, . . *, u,,, 0,-P+l, . . ., O,, in this neighborhood. 
(This follows from the classical theory of functional determinants.) 
Hence we have 

f(Xly X22 
. . . 

X Xs; Oly 02y 
. . . 

X 0j) 

(19.8) - f(xi, x2, , x,; 41i, 4)2, 0* '-,, - , * X ) 

--f(Xl, X2, * Xs; U1l U2, . . . 
U-,y) 

By definition f has continuous partial derivatives af/ 90i (i = 1, 2, *, K); 

therefore, af/0ai (i= 1, 2, *...* K -v) exist and are continuous in the 
neighborhood of 00. Since also aO0/0uj (i= 1, 2, * * K- Kv;j= 1, 2, - * * 
K -v) exist and are continuous as shown above, f has continuous partial 
derivatives af/Ouj (j= 1, 2, * * *, K-V) in a certain finite neighborhood 
of 00. But when f_ f also 9f/0uj (j= 1, 2, * * , K - V) must exist and be 
continuous in the same neighborhood. We therefore have 

af _ f ul Of OuK_ 
_ + . . + 

(9 

90 au1 0 01 au,-t, aOO 

Of af au, Of u,-, 

(19.9) 902 C U1 902 au,- ao2 

af af au, Of Ou#C,_ 

a00 au1 900K au'w 900 

(19.9) can be considered as a singular linear transformation of the 
K - Vvariables 9f/Ouj (j=1, 2, * * K-V), into the K variables af/aO0 
(i= 1, 2, . . ., K), the matrix of the transformation being-by defini- 
tion-of rank K - v for 0=00, and having continuous elements in the 
vicinity of 00. But then Theorem 1 follows immediately from the theory 
of linear dependence. 

The converse of Theorem 1 may be shown, under certain weak addi- 
tional restrictions upon the X's. 

We shall now prove a theorem which gives a sufficient condition for 
the nonexistence of a relation of type (19.3) in the vicinity of a parame- 
ter point 00, namely: 
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THEOREM 2. If the functions 0f/901, 0f/902, * * *, 0f/d0k*, are linearly 
independent at the point 00, i.e., if, at the parameter point 00, 

(19.10) ; xt?-A 0 
i-1 oG0i 

whatever be the system of constants 1?, X20, - * X\, not all equal to zero, 
then there exists a finite neighborhood of the parameter point 00 such that, 
in this neighborhood, there are no parameter points 0' $00 for which (19.3) 
is satisfied. 

Proof: First, it is easy to see that the linear independence of the func- 
tions df/d0i at 0 = 00 implies that the set S(00) defined above contains at 
least K different points (y(i), x1(i), x2(), * , x,()) (j= 1, 2, . . ., K) such 
that if 

(19.11) y(j) = f(i) (j = 1, 2, . . ., K), 

be the system of equations obtained by inserting successively these K 

point in (19.1), the Jacobian 

Of(1) Of(1) of(') 

d9A, d9 2 d9 Ol 

of(2) f (2) _f(2) 

(19.12) d00 002 (00 # 0 for 0 = 00. 

df (X) ff(K) df(X) 

aoo 002 d@, 

Since also, by definition, of/la0 are continuous functions of the pa- 
rameters 0, and the x's in (19.11) are constants, it follows from the 
theory of functional determinants that the system (19.11) can- be solved 
for 01, 02, . . . *, O, and the solution is unique, and therefore equal to 
010, 020, *2* *, 0. . Within a certain finite neighborhood of the parameter 
point 00 there are no other parameter points ?00 satisfying (19.11). 
This proves Theorem 2. 

From this follows immediately 

THEOREM 3. If 0f/a01, af/902, * * . , Of/aO,, are linearly independent for 
every point 00 in the interior of De, then (19.3) is at most satisfied for pa- 
rameter points between which there is a finite distance greater than a cer- 
tain positive e. 

Thus, in most practical cases the question of arbitrary coefficients 
can be answered by investigating whether or not the partial derivatives 
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of f with respect to the 0's are linearly dependent. But for this purpose 
we need-at least in the more complicated cases-a rule that decides, 
in a finite number of steps, whether or not such linear dependence 
exists. In the next section we shall give such a rule. 

20. The Gramian Criterion for Linear Dependence of Functions 
Extended to Functions of Several Variables 

Let 

U1 = U1 (Vl, V2, Vn), 

(20.1) U2 = U2 (V1, V2, Vn), 
* . . . . . . . . . . 

Urn = Um (Vl, V2, , * V,) 

be m real functions of n > m independent real variables, vl, v2, Vn. 
Assumption: Ul, U2, * * * , Ur,m are continuous functions of the n 

variables v over a certain closed domain W in the v-space, defined by 

(20.2) as < vi a d, (i = 1, 2, ***,n) 

where ai, dY (i=1, 2, ,n) are 2n real numbers. 
Consider the expression 

(20.3) s = clU1 + c2U2 + * + cm Ur, 

where the c's do not depend upon the v's, nor the a's in (20.2). If a sys- 
tem of c's, not all zero, can be found, such that 

(20.4) s 0 

for all values of vi, V2, .. ** Vn in the domain defined by (20.2), the m 
functions (20.1) are said to be linearly dependent in W. 

Let us consider the integral 

(20.5) S = ... f s2dv1dv2* . . dvn. 
(W) 

We have 

(20.6) S 2 0. 

S is zero when and only when (20.4) is true. Therefore, if a set of c's, 
not all zero, exists for which (20.4) is satisfied, it must-at the same 
time-be such a set of c's as makes S a minimum and equal to zero. And, 
conversely, if there is a set of c's, not all zero, such that S =0, then 
(20.4) is fulfilled. The problem of linear dependence is, therefore, re- 
duced to a study of the minimum of S with respect to the c's. 
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Since not all c's should be zero, we may assume that 

(20.7) S 2 = 1. 

We have to find the minimum of S under the side condition (20.7), or, 
what amounts to the same, to find the unrestricted minimum of 

m 
(20.8) S' = S - XE c 2, 

i*1 

where X is a Lagrange multiplier. Let us introduce the following nota- 
tions 

(20.9) M,j = ... f UiUj(dvdv2 . . dvu) 
(W) 

(i =1, 2, ... ,m; j=1,2,* ,m). 

A set of c's minimizing (20.8) must satisfy the following system of lin- 
ear equations 

(Mll - X)c1 + M12c2 + .* + Mimcm = 0, 

(20.10) + (M22 - X)c2 + + M2mCm = 0, 

Mmici + Mm2C2 + . . . + (Mmm - X)Cm = 0. 

(20.10) has a solution of c's not all zero when and only when the de- 
terminant formed by the coefficients of the c's is equal to zero, i.e., 

(Mii - X) M12 . .. Mim 

(20.11) M21 (M22-X) * M2m =0. 

Mml Mm2 ... (Mmm - X) 

Now S is a positive (semi) definite symmetric quadratic form. There- 
fore, all X-roots of (20.11) are nonnegative. S has, therefore, a mini- 
mum = 0, for other values of the c's than all zeros, when and only when 
the minimal X-root of (20.11) is equal to zero. A necessary and sufficient 
condition for the linear dependence of the m functions (20.1) is, therefore, 
that 

(20.12) | Mij| = 0, 

where I MqJ is the determinant (20.11) for X=0. 
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21. An Illustration of the Problems of Estimation 
We shall consider a simple linear supply-demand scheme, including 

certain random elements and an autonomously imposed sales tax. 
Let {lt(D) be the quantity demanded at point of time t, {lt(3) the 

quantity supplied, t2t the price per unit sold, and t3t a sales tax per unit 
sold, fixed for each point of time independent of the quantity sold. Con- 
sider these variables at N equidistant points of time t =1, 2, , N. 
We shall assume it known that these variables satisfy the following 
system of random equations: 

(21.1) 6t1(D) = 1l2t + Elt (t = 1, 2, , N), 
i.e., a linear demand curve with random shifts elt; 

(21.2) it(1 ) a2(62t - 3t) + E2t (t = 1,2, * ... , N) 

i.e., the supply is a linear function of (price minus tax) and a random 
shift 62t. Further, we impose the market relation 

(21.3) 6t(D) = tit(S) = (lt = quantity sold at t. 

We assume known the following properties of the 2N random varia- 
bles eii, el2, . . ., ElN, C21, E22, . . ., 62N: (a) They are independently and 
normally distributed and (b) their distribution does not depend upon 
t3t. (C) All the N random variables el,, t =1, 2, * * , N, have the same 
mean ii and the same variance ao2; likewise, all the N random variables 
E2t, t= 1, 2, *.* , N, have the same mean i2 and the same variance 122. 

Further, we assume that there are errors of measurement in the ob- 
servations of the quantity sold, lti, such that, instead of lti, we observe 
(21.4) xit = tit + -lt (t = 1, 2, . .. , N), 

while the price t2t and the tax t3t are observed without errors, i.e., 
(21.5) X2t = 42t, X3t = t3t (t =1,2, * ... , N). 
We assume that the N random variables 7111, 12, . . ., 1N, are inde- 
pendently normally distributed with zero means and the same vari- 
ance a2, and that their distribution does not depend upon the t's nor 
the e's. 

The N numbers 631, t32*, t3N, are assumed to remain fixed in 
repeated samples. 

Because of (21.3), both lti and t2t will be random variables. Indeed, 
from (21.3), (21.1), and (21.2) we obtain (provided al$;a2) 

ala2 a2Elt - alf2t 

tlt = 3t +- 

(21.6) a2-al a2-al 

a2 EI t - E2 t 
t2t = + 

a2-al a2-al 
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which shows that both tit and t2t are functions of the two independent 
random variables elt and E2t- 

If we could make experiments to study, separately, the demand func- 
tion (21.1) and the supply function (21.2), we could reason in this way: 
(1) For a given value of t2t , t(D) is a random variable with expected 
value equal to ai(t2t+ i. (2) For given values of t2t and 63t, (it () is a 
random variable with expected value equal to a2(62t- 3t) + ?2. And we 
could "fit each of the equations (21.1) and (21.2) separately" to the 
respective data obtained by the two series of experiments. But in our 
case, because of the market relation (21.3), we cannot assume 42t to 
remain fixed in repeated samples. That would simply be inconsistent 
with the original assumption that the errors E1 and E2 are independent. 
To realize clearly all the implications of our scheme we have to consider 
the joint probability distribution of the observed variables x1t and x2 , 
given x3t, t= 1, 2, - - *, N. 

Introducing (21.4) and (21.5) in (21.1) and (21.2), we obtain 

(21.1') XIt = ClX2t + Elt + 7l7t, 

(21.2') Xit = a2(X2t - X3t) + E2t + flit, 

or 
ala2 aC2Et - ac2 

Xlt = X3t + + flit, 

(21.6') a2 - 
a1 a2 - ai 

Cft2 1lt - E2t 
X2t = - X3t + - 

aZ2-al a2-al 

xit and X2t are jointly normally distributed, because they are linear 
functions of the normally distributed variables elt, E2t, 7lit. We therefore 
have, for any fixed point of time t, 

1 1 -x(Xltit) 2 
pt(XIt, X2t X3t) = 1 exp 2F 

2p (xit- Xlt) (X2t -X2t) (X2 t- -2 ) 2 ) 

2IA2 V2 -p2 

where ,s12, A22 are the variances of xit and X2t respectively, -, at their 
mean values, and p their correlation coefficient, x3t being given. From 
(21.6') we obtain 

(21.8) h t = 2 
X3t 2- - al2 

a2 - al 2 -Ci 

(21.9) X2t = X3t + 
- 

- 
2 

a2 - a, Ct2 - Ci 
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1 
(21.10) l= x-2 = =- 

(a2 
= (a22of12 + al2022) + a2 

(a2 - l 

1 
(21.11) $22 = E(x2t - X2t)2 = a (12 + 022) 

(a2 - al)2 

1 a2cTl2 + ai0T22 
(21.12) p = E(xit - Xlt)(X2t - X2g) = 

A1A2 (a2 - al) t142 

This shows that only the averages xti and X2V depend upon t, while the 
other parameters are independent of t. 

Since the random variables xit, x2t for one value of t are distributed 
independently of those at another value of t, the joint distribution of 
the 2N variables xi,, Xl2, . ., XlN, X21, X22, * * *, X2N, is 

(21.13) p(x11, * * * , XlN, X21, * , X2N) = Hpt (t = 1,2, 2 , N). 
Let us introduce new parameters by the transformations 

ala2 
(21.14) a,= - 

a2 - al 

a261 - al2 
(21.15) a2 = 

a2 - a, 

(21.16) bl = a2 

a2 - al 

(21.17) b2 - 62 

a2 - al 

Then (21.8) and (21.9) become 

(21.8') x=t alX39 + a2, 
(21.9') X2t blX3t + b2. 

Introducing (21.7) in (21.13), and using (21.8') and (21.9'), we obtain 
(21.18) p = CeQ, 

where 

1 F(x1t -alX3t- a2)2 

2p(xlt-alX3t-a2) (X2t- blX3t- b2) (X2t- blX3t- b2)21 _+ -, 
p1112 122 _ 

and $ 

(21.20) C= 
(2711112) N(1 - p2)N/2 

means, throughout this section, ?EN). 
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The distribution (21.18) is, therefore, characterized by 7 unknown 
parameters, namely a,, a2, bi, b2, All, 2, p. If there exists a unique esti- 
mate of these 7 parameters, the question of uniqueness of the original 
parameters depends only upon the transformations (21.10)-(21.12) and 
(21.14)-(21.17). Now it is easy to see that these transformations estab- 
lish a one-to-one correspondence between the old and the new parame- 
ters over the whole parameter space, except for a trivial set of measure 
zero (namely a1 =0, or a2 =0, or ai = a2). We therefore have to investi- 
gate the uniqueness of the parameters in (21.18). This can be done by 
means of the theorems in Section 19. 

The partial derivatives of p [in (21.18)] with respect to the parame- 
ters are 

Op OQ Op OQ 
-= CeQ-, - = CeQ-, 

oa1 oa1 Oa2 Oa2 

op ~ OQ Op OQ 
-= CeQ-. - = CeQ-} 

(21.21) Ob, Ob, 012 0b2 
Op /OG OQ Op aOG OQ 

-= eQ (-+ C) =eQ -+ C), oill aAl aill 0s2 i.2 0s2 

-= eQ(+ C-) 
Op OGp OP 

According to Section 19 we are interested in whether these 7 partial 
derivatives are linearly dependent. If that should be the case, there 
would have to exist 7 X's, Xl, X2, . . ., X7, which are independent of the 
variables x, not all zero at the same time, and such that 

OQ OQ OQ OQ (OC aQ) XlC Q+X2C Q+X3C Q+X4C Q+X5 C+C c Q 
0a1 0a2 0b1 0b2 ky O 8ti Os 

(21.22) OC OQ (OC OQ 

a\-c aQ )7(ac + 
a 
Q)e 

O2u2 Og p Ol p 

for all values of the variables x. Since we do not know the true parame- 
ter values we are interested in whether there is any parameter point 
at all for which (21.22) is fulfilled. 

From (21.19) and (21.20) we see that the left-hand side of (21.22) 
will be a second-degree polynomial in the variables x. (21.22) can be 
fulfilled only if the coefficients of equal terms in this polynomial vanish 
separately. Using this we verify easily that all the 7 X's must be equal 
to zero, whatever be the true parameter point (except p = ? 1, which is 
trivial), provided among the set of N constants x31, x32, . . ., X3N, there 
are at least two that are different. 
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All the 7 parameters of (21.18) can, therefore, in general be esti- 
mated. 

We shall consider, in particular, the maximum-likelihood estimates7 of 
the parameters in (21.18), i.e., the parameter values obtained by setting 
each of the 7 derivatives in (21.21) equal to zero and solving this system 
of 7 equations. We obtain the following equations defining the maxi- 
mum-likelihood estimates (which we denote by d1, 62, etc.): 

(21.23) E (Xit - 6iX3t - 62) = 0, 

(21.24) E (X2t - b1x3t - b2) = 0, 

(21.25) Z (Xit - aiX3t - 42)X3t = 0, 

(21.26) (Xt- b1X3t - b2)x3t = 0, 

(21.27) N^12 - Z (Xlt - 61X3t - 62)2 = 0, 

(21.28) N -22 Z (X2t - 'lbX3t - b2)2 = 0, 

)j (Xit -alX3t - 62)(X2t - blX3t - b2) 
(21.29) Nk ̂ 0. 

It is easy to verify that this system has, in general, a unique solution 
with respect to the 7 parameters a,, a2, . . . etc. For example, from the 
first 4 of these equations we obtain 

(21.30) d1 M13 - M1Mm3 
M33 -M32 

^ M23 M2M 
(21.31) bi= 2m 

M33 -M32 

where 
1 1 

(21.32) mij= Xitxjt, mi = E xit. 
N N 

These are the same results as we should obtain by writing the "con- 
fluent" relations (21.6') in the form 

(21.6") Xit = aiX3t + a2 + error, X2t = b1x3t + b2 + error, 

7 The method of maximum likelihood, commonly used by statisticians, was 
originally founded more or less upon intuition, but recently it has been shown by 
A. Wald that the method, under certain conditions, can be justified on the basis 
of modern theory of confidence intervals. See his articles, "A New Foundation 
of the Method of Maximum Likelihood in Statistical Theory," Cowles Commis- 
sion for Research in Economics, Report of Sixth Annual Research Conference on 
Economics and Statistics ... 1940, pp. 33-35, and "Asymptotically Most Power- 
ful Tests of Statistical Hypotheses," Annals of Mathematical Statistics, Vol. 12, 
March, 1941, pp. 1-19. 
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and fitting each of these equations to the data by the method of least 
squares, treating xit and X2t, respectively, as the dependent variable. 
This would, therefore, also be a correct procedure. But the results 
(21.30), (21.31) are not the same as those we should obtain by fitting 
the two original equations (21.1') and (21.2') separately, treating xit as 
dependent variable in both equations. For example, from (21.14), 
(21.16), (21.30), and (21.31) we obtain 

41 M3- mlm3 
(21.33) 1 = b1= 2 

bi M23- M2M3 

while, if we should fit (21.1') directly by the method of least squares, 
we should obtain 

(21.34) al* = M12 - 
mlm2 

M22 - M 22 

which is obviously different from (21.33) since (21.34) does not depend 
directly upon x3t, while (21.33) does. 

a,* in (21.34) is simply not an estimate of al, but something else. 
The point is this: Consider the equation (21.1'). From this equation we 
have E(x1tI X2t) =alx2t+E(eltl X2t). (21.34) would have been an estimate 
of al if E(e1lI X2t) had been independent of X2t and x3t. But that is not 
the case here. And, therefore, the assumption upon which the least- 
squares "estimate" (21.34) is based, namely that E(xltIX2t)=alX2 
+constant, is here simply wrong. In fact, from the joint distribution 
(21.18) of xit and X2t, and the transformations (21.10)-(21.12) and 
(21.14)-(21.17) we obtain easily that E(x1lf X2t) is a linear function of 
X2t and X3t, namely 

a2(T12 + al(T22 a20f12 
(21.35) E(x1t I X2t) = 2 + 2 X2t 2 X3t + const. 

0i2 4 022 0i 4 022 

If we want to predict Xit, given X2t and x3:, this formula (21.35) is 
the one to be used. For that purpose we may, if we like, write (21.35) 
as E(xlt I X2t) = Ax2t+Bx3t+C, and fit this equation directly to the data 
by the method of least squares. That gives the same result as if we first 
estimate all the coefficients in (21.35) by the method of maximum like- 
lihood as described above, and then insert these estimates in (21.35). 

Thus, we see that the method of least squares applied to the original 
equations (21.1') and (21.2') separately, neither gives correct estima- 
tion formulae for the coefficients, nor does it give the correct formulae 
for prediction. This shows the importance of studying the joint dis- 
tribution of all the observable random variables in a system of sto- 
chastic relations. 



CHAPTER VI 

PROBLEMS OF PREDICTION 

A statistical prediction means simply a (probability) statement about 
the location of a sample point not yet observed. If we consider n ran- 
dom variables, say xi, x2, - * *, x", and if we know their joint probabil- 
ity law we may, at least in point of principle, calculate the probability 
of a sample point (xl, x2, * * *, x,n) falling into any given region or point- 
set of the sample space, or we may prescribe a certain fixed probability 
level and derive a system of regions (or point-sets) which have this 
probability. In practice we should then usually be interested in that 
region which, at a given probability level, is the "smallest" (in some 
sense or another). Thus, if we actually knew the joint probability 
law of the variables to be predicted, the problem of deriving a predic- 
tion formula having certain desired properties would merely be one of 
probability calculus. And the question of choosing a "best" prediction 
formula would, largely, be a subjective matter, that is, a question of the 
type of "gambling" we should be willing to accept. 

Usually, however, we do not know the probability law of the varia- 
bles to be predicted. Then the problem of prediction becomes one 
closely connected with the problems of testing hypotheses and estima- 
tion. For we then have to draw inference concerning the probability 
law of the variables to be predicted from samples already observed. 
We shall attempt to give a more general and rigorous formulation of 
these problems. 

22. General Formulation of the Problem of Prediction 

Consider n sequences or time series of random variables xit 
(i= 1, 2, ... , n) observable from t= 1 on. Values, if any, of the varia- 
bles prior to t = 1 we shall here consider as given constants. Suppose 
that we can observe values of each series up to a certain point of time. 
Let t = si be this point of time for the ith series. And suppose that the 
problem is to predict the results of later observations not yet made. 
We then have the following schedule of random variables to be con- 
sidered. 

(22.1) Xt = 
xi.1, xi2, . . *, Xixs8iXi, Xi+l xi,8i+2, 

... 

(i = 1, 2, ...* n). 

Xl.t, X2,t, * ..., Xn t, may for example be n related economic time se- 
ries, t-si denoting the latest point of time for which an observation 
of xi t is, so far, available. We might want to predict the next value 

- 105 
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in one or more of the series, or the second next, or both, or any other 
joint system of future values of the variables not yet observed. Con- 
sider any system of M variables chosen among the variables xi, i+? 
(i=1,2, * , n; T= 1,2,3, ). Together with the s1+s2+ +Sn 

=N observed variables the variables to be predicted form a system of 
N+M random variables. Let us, for simplicity, change notations of 
these variables, denoting the N observable variables by xi, X2, ... , XN, 

and the M variables to be predicted by XN+1, XN+2, * , XN+M, SO 

that there is a one-to-one correspondence between these variables and 
the N+M variables xi,t considered. 

The problem of prediction is then the problem of establishing cer- 
tain functions of the observable variables x1, X2, , XN, that may 
be used as guess values for the outcome of the future observations of 
XN+1, XN+2, * , XN+M. 

We shall assume that, whatever be si, 82, , s-, and whatever be 
the set of M future variables considered, the joint elementary probabil- 
ity law of the N+M variables xi, X2, - X- , xNx+i, * * XN+M exists. 
(But it might not be-and usually is not-known.) Let this joint proba- 
bility be denoted by p(x1, X2, * * *, XN, XN+1, * * *, XN+M), or, for short, 
p. This probability law would usually be described implicitly by a sys- 
tem of stochastical relations between the variables considered, as ex- 
plained in Chapters IV and V. 

Let us for a moment suppose that p is known. From p we might then 
calculate the conditional elementary probability law of the M variables 
XN+1, ... , XN+M, given the N variables x1, X2, , . XN. Let this condi- 
tional probability law be denoted by P2(XN+1, * , XN+M I X1, X2, ., XN), 

or for short, P2. Let pi(xi, X2, , XN), or for short, pi, denote the 
joint probability law of the N observable variables. We may then write 

(22.2) p = Pr P2. 

Let, further, E1 denote any particular system of values-one for each- 
of the observable variables x1, X2, -, XN; and, similarly, let E2 
denote any system of values of the future variables XN+1, * * *, XN+M. 

Any E1 may be represented by a point in the N-dimensional sample 
space R1 of the variables xi, X2, , xN; and, similarly, any E2 may be 
represented by a point in the M-dimensional sample space R2 of the 
variables XN+1, - * *, XN+M to be predicted. Finally, let E denote a point 
in the sample space R of all N+M variables. 

Now, given any particular E1, we may from P2 calculate the condi- 
tional probability of E2 falling into a prescribed point-set of the sample 
space R2. This probability would usually be a function of E1. Also, 

1 See, e.g., Harold Hotelling, "Problems of Predictions," The American Journai 
of Sociology, Vol. 48, July, 1942, pp. 61-76. 



PROBLEMS OF PREDICTION 107 

for any given E1 and for any given level of probability, ,B say, we may 
derive a system of point-sets or regions in R2, such that the probability 
of E2 falling into any particular one of these sets is ,3. That is, we may 
predict, with probability= 3 of being correct, that E2 will fall into any 
particular one among these point-sets. Any such point-set in R2 we 
shall call a region of prediction, and we shall denote such a region by W2. 

In general, however, not all the regions W2 of probability ,3 are 
equally "interesting." Usually (though not always) we are interested 
in that region, with probability ,B, which is the "narrowest," in some 
sense or another. Or, we might also be interested in predicting that the 
sample point E2 will not fall within a certain region. In any case the 
choice of the probability level ,B and of the location of that region W2, 
with probability ,B, which we want to use as a prediction formula will 
depend on the practical use we want to make of it. This choice is not a 
statistical problem. We shall simply assume that, whatever be the con- 
ditional probability law P2, the purpose of our attempts to predict will 
lead us to one and only one region W2 of predicting E2, for every set of 
values of the "predictors" xl, X2, . . ., XN. 

If, therefore, we knew P2 the problem of prediction would merely be 
a problem of probability calculus, and not one of statistical inference 
from a sample. But in most practical cases P2 is not known, and we then 
have to try to get information about P2 from samples E1 of the previous 
observations. The possibility of doing so rests upon a basic assumption, 
which can be formulated as follows: The probability law p of the N+M 
variables x1, X2, *. *, XN, XN+1l . . *, XN+Mis of such a type that the speci- 
fication of pi implies the complete specification of p and, therefore, of P2. 

For instance, if p is characterized by a certain number of unknown 
parameters, then all these parameters must also be the characteristics 
of pi so that P2 will contain no new parameters in addition to those 
occurring in pi. This is only another, more precise, way of stating that, 
in order to be able to predict there must be a certain persistence in the 
type of mechanism that produces the series to be predicted. 

Suppose now that the only thing known about Pi is that it belongs 
to a certain specified class i1 of elementary probability laws, and that, 
therefore, P2 belongs to a certain corresponding class Q2. Let pi* denote 
any arbitrary member of Q2. And let Wl(pi*) be a critical region, of 
size (1- a), in R1, chosen according to some rule, such that the hy- 
pothesis pi =pl* is rejected when and only when E1 falls into Wl(pl*). 
Let there be established a system of such critical regions in R1, one for 
every member p1* of Q2. If El falls outside Wi(pi*) then Pi= p* is not 
rejected. If the system of regions Wl(pl*) is not to be trivial, any sample 
point E1 will fall outside some of the regions Wl(pl*). E1 being an arbi- 
trary sample point of the N observable variables, let w(El) be the sub- 
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set of Q1 in whose critical regions [of size (1--a)] E1 does not fall. As 
explained in Section 14 it then seems reasonable to estimate the un- 
known probability law pi on the basis of E1 by stating that pi e cw(El). 
Now, we have assumed above that, for every member pi* of Qi? (or- 
what is the same-for every P2* of Q2) and for every set of values of 
X1, X2, ... , XN, our choice of prediction formula leads to one and only 
one region of prediction W2*, of size 3. To the subclass w(El) there 
therefore corresponds a certain subclass of such regions of prediction. 
Let K(El) be the (logical) sum of all the elements W2* of this subclass. 
It might then seem reasonable to predict E2, on the basis of the sample 
point E1, by stating that 

(22.3) E2 will fall into K(E1). 

What is the probability of this statement being true? Let 
g [K| pi cE w(El) ], or, for short, g(K) be the probability of E2 falling 
into K when pi ? c(E1). And let g{KIp1 c [%1-co(El)]}, or, for short, 
g(K), be the probability of E2 falling into K when pi is outside W(El). 
The probability, P(E2 c K), of (22.3) being true is then evidently 

(22.4) P(E2eK) = ag(K) + (1 -a)g(K), 

i.e., the probability of (22.3) being true is the probability of W(E1) 
covering pi times the probability that E2 then falls into K plus the 
probability that co(El) does not cover pi times the probability that E2 
then falls into K. Now, the probabilities g(K) and g(K) will, in general, 
be functions of the true distribution pi. But we may give inequalities 
for P(E2 e K). Evidently 1 g(K) A, while 0 < g(K) < 1. Therefore, 

(22.5) 1 > P(E2 EK) > a3. 

(For particular Q1's there might exist narrower limits.) 
The procedure just described might also be looked upon in the follow- 

ing way: We have assumed that to every member pi* of Q? there is a 
certain region of prediction W2* which we should use if pi* were the 
true distribution. If pi* is the true distribution the probability that 
K(E1) shall cover the corresponding region of prediction is evidently 
equal to a. Therefore, K(E1) may be considered as a confidence region, 
with confidence coefficient a, for estimating the location of the "ideal" 
region of prediction W2 corresponding to the true hypothesis. 

The usual problem in practice is, however, to derive regions of predic- 
tion for E2 which, with a given probability level, are as "small" as 
possible. Then the regions K derived as described above might not nec- 
essarily be the "best" regions to choose. More precisely, if for a given ,B 
the regions W2* were the "smallest" regions (according to some meas- 
ure), and if the confidence sets w(El) were the "smallest" confidence 
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sets, the question of whether or not the corresponding K(E1), measured 
in the same measure as the regions W2* would be the "smallest" re- 
gion of prediction would depend on the way in which the term "small- 
est" is defined with respect to co(Ej). Or, expressed in simpler terms, 
the choice of a particular system of confidence sets for estimating pi 
depends on some system of weights of the type of errors that might be 
committed by stating that w(Ei) will cover pi. If, on the other hand, 
the purpose is to derive a region of prediction K(E1), a different weight- 
ing of the errors of estimate might be necessary in order to arrive at 
the desired weighting of the possible errors of prediction. 

We see therefore that the seemingly logical "two-step" procedure of 
first estimating the unknown distribution of the variables to be pre- 
dicted and then using this estimate to derive a prediction formula for 
the variables may not be very efficient. We shall discuss a simpler and 
more direct method of deriving prediction formulae that avoids the 
difficulties discussed above. 

Let E2 denote any point in the sample space R2 Of XN+1, ,XN+M, 

and let W2 denote a point in R2 to be used as a prediction of E2. We con- 
sider the problem of defining E2 as a function of x1, x2, ,XN, in such 
a way that the probability will be high that F2 will be close to E2 (in 
some sense or another). We shall call E2 a prediction function. If we 
state that E2 will coincide with E2 and this does not occur, we commit 
an error the consequences of which will depend on the purpose of the 
prediction. Using an idea of A. Wald2 we might assign a system of 
weights to the various possible errors. Let this system be defined by 
a weight function Q(E2, E2), such that Q = 0 if E2 = E2 and Q 0 (and 
not identically zero) for all points E26 E2. Q might be considered as the 
"loss" incurred if E2A E2. The expected value r of this loss, in repeated 
samples, is given by 

(22.6) r = fQ(E2, T2)pdEiy 

the integral being taken over the whole sample space R of the N+M 
variables x1, x2, * * *, XN, XN+1, ., Xy+M. We have to choose E2 as 
a function of x1, X2, * * *, XN, and we should, naturally, try to choose 
W2(xi, x2; * * *,XN) in such a way that r (the "risk") becomes as small 
as possible. 

Suppose there should exist a prediction function E2(x1, X2, . . *, XN) 

depending on X1, X2, - * *, XNonly, such that for this particular function 
r would be at a minimum, independently of what be the true distribu- 

2 See A. Wald, "Contributions to the Theory of Statistical Estimation and 
Testing Hypotheses," Annals of Mathematical Statistics, Vol. 10, December, 1939, 
pp. 299-326. 
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tion pi (within Q1). Then we should naturally choose this function at 
the best prediction relative to the given weight-function Q. We might 
call such a prediction function "uniformly best (within i1) relative to 
the given weight function." 

In a few simple cases such prediction functions might exist. In gen- 
eral, however, we may expect that no uniformly best prediction func- 
tion exists. Then we have to introduce some additional principles in 
order to choose a prediction function. We may then, first, obviously 
disregard all those prediction functions that are such that there exists 
another prediction function that makes r smaller for every member of Q1. 
If this is not the case we call the prediction function considered an 
admissible prediction function. To choose between several admissible 
prediction functions we might adopt the following principle, introduced 
by Wald: For every admissible prediction function E2 the "risk"' r is 
a function of the true distribution p. Consider that prediction func- 
tion E2, among the admissible ones, for which the largest value of r 
is at a minimum (i.e., smaller than or at most equal to the largest value 
of r for any other admissible E2). Such a prediction function, if it exists, 
may be said to be the least risky among the admissible prediction func- 
tions. The problem of deriving such prediction functions is closely re- 
lated to the similar problem of deriving best estimates.' 

23. Some Practical Suggestions for the Derivation of 
Prediction Formulae 

From the discussion just concluded it is seen that the choice of a 
prediction formula cannot, in general, be made entirely on objective 
grounds. The choice of the weight function Q, for instance, is not an 
objective statistical problem. Also, the choice of a prediction formula 
when no uniformly best prediction formula exists is a more or less 
subjective matter. The advantage of the formal procedure we have out- 
lined is, however, that it describes precisely where and how the subjec- 
tive elements come into the picture, and what their logical consequences 
are. The apparatus described gives us more efficient tools for forming 
the prediction functions according to our wish. Thus, for instance, the 
notion of a weight function Q is useful in the sense that, if we should 
choose a prediction functon more or less arbitrarily (by a freehand 
method, let us say), the corresponding weight function that would 
make this arbitrary choice the "best" might be such that we would 
not accept it. That is, we should realize that the arbitrarily chosen 
prediction function was not very good after all. 

I For a discussion of the problems of prediction within a model of linear sto- 
chastic difference equations see Mann and Wald op. cit., pp. 192-202. 
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A practical rule, perhaps not generally recognized, in dealing with 
several time sequences simultaneously is the following: If we want to 
predict future values for one or more of the sequences it is usually 
necessary to derive the prediction formulae on the basis of the joint 
distribution of the observable elements in all the series. That is, we have 
to take into account, not only the serial, stochastical, dependence be- 
tween successive observations in one and the same sequence, but also 
the interdependence, if any, between the various sequences considered. 
The situation is here similar to the situation in regard to estimation of 
unknown parameters, as discussed in Chapter V.4 

The apparatus set up in the preceding section, although simple in 
principle, will in general involve considerable mathematical problems 
and heavy algebra. There are, however, important cases where more 
simple procedures will be sufficient. We should like to suggest one such 
procedure that might be applied with success in certain ordinary cases 
occurring frequently in econometrics and other types of statistical re- 
search. 

Suppose we have a case where the following assumptions are fulfilled 
(using here the notations of Section 22): 

1. The distribution pi of xi, X2, *.* . . XN is known to belong to a 
parametric family of distributions, involving the unknown parame- 
ters al, a2, * , ak, i.e., we may write pi=pi(xi, X2, . . ., XN; 

al, a2, a k), or, for short, pi [El; (a)]. 
2. The distribution p of all the N+M variables considered is ob- 

tained simply by substituting N+M for N in pi, N and M being arbi- 
trary positive integers (except, perhaps, that N may have to be larger 
than a certain positive integer, say No). P2 is, therefore, also known, 
except for the values of the parameters a. 

3. It is established that the maximum-likelihood estimates of the a's 
derived from pi [El; (a<)] for an observed sample E1 are unbiased and 
converge stochastically to the true parameter values with increasing N, 
and that these estimates are "good" estimates also for moderate size 
of N. 

Consider the "conditional risk" f defined by 

(23.1) = f Q(E2, E2) p2[E2; (a) I E1] dE2. 
R2 

For fixed E1 we may consider f as a function of E2. We might then pro- 
ceed as follows, to derive the prediction function E2 = E2(Xl, X2, ... , XN): 

4For further discussion of this particular problem see the author's article, 
"Statistical Implications of a System of Simultaneous Equations," ECONOMET- 
RICA, Vol. 11, January, 1943, pp. 1-12. See also the discussion by H. B. Mann 
and A. Wald, op. cit., pp. 215-216. 
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I. Find that point E2 which, for a given set of a's and a given sample 
of Xl, X2, . . *, XN, makes r a minimum (assuming that such a minimum 
exists). The point E2 corresponding to this minimum of r will, in gen- 
eral, be a function of the a's and the observable variables xi, x2, , XN. 

Denoting this function by E2 we may therefore write 

E2 = E2(xl, x2, *, XN; il, a2, . , ak). 

II. In the function E2 insert for the a's their maximum-likelihood es- 
timates ak, a2, , *, , as derived from the observations xi, X2,* ,XN 

and the distribution pi. The resulting prediction formula E2 =E2(xl, X2, 

* XN; al, a2, **, k) then contains only known elements and is, 
therefore, determined. 

This procedure can be shown to lead to the same prediction formulae, 
in certain ordinary cases, as those which are already established as 
"best" on the basis of the general theory of statistical estimation. We 
shall give an example. 

Consider a sequence of random variables defined by the recurrence 
formula 

(23.2) Xt = kxt-1 + et (t = 1, 2, ... 

where xo is a given constant, while k is an unknown constant, and where 
the c's are independently, normally distributed with means equal to 
zero, and the same variances, equal to Ur2. Suppose we have observed xt 
up to and including XN and we want to predict XN+1 and XN+2. Assume 
further that we have chosen a weight function of the following type: 

(23.3) Q = a(XN+2 - XN+2) 2 + 2b(xN+2 - xN+2)(XN+l - XN+l) 

+ C(XN+l - XN+l) 2 

where XN+l and xN+2 denote the predicted values of XN+1 and XN+2, and 
where a>O, b, and c are certain known constants, such that ac>b2. 
(That is, the weight of an error in prediction is constant along an ellipse, 
with center at ?N+1, xN+2.) 

The joint distribution of xN+1 and XN+2, given the preceding x's, is 

(23.4) P2 = -(1/22) 

where 

(23.5) Y = (XN+1 - kxN) 2 + (XN+2 - kxN+1)2. 

The conditional expectation of Q is then [see (23.1)], 

(23.6) = f + Qe (1/22) ydxN+idxN+2. 
00 27r(T2 
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Minimizing f with respect to xN+l and tN+2 we obtain the following two 
equations for XN+1 and xtN+2, 

(23 . 7) aXN+2 + bxN+, ak2XN + bkxN, 

bXN+2 + CXN+l = bk2XN + CkXN, 

which give 

(23.8) xN+l = kxN, 

XN+2 = k2XN 

independently of the values of a, b, and c. That is, the "best" prediction 
values relative to the weight function (23.3) are the expected values of 
XN+i and XV+2. But we do not know k. Its maximum-likelihood estimate 
i is, however, 

N 
E Xtxt-i 

(23.9) = t=1 

N 

2d Xt-1 2 
t=l 

Our prediction formulae are therefore, according to the principle 
adopted, 

(23.10) XN+1 = X?XN, 
XN+2 -=2XN 

To judge the reliability of the prediction we may, e.g., consider the 
probability of (xv+1- xN?+) and (XN+2 - xN+2) being within certain 
bounds, the variables XN+1 and tN+2 being defined by (23.9) and (23.10); 
or, we could simply study the values of the risk, as calculated from 
(22.6). 
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CONCLUSION 

The patient reader, now at the end of our analysis, might well be 
left with the feeling that the approach we have outlined, although 
simple in point of principle, in most cases would involve a tremendous 
amount of work. He might remark, sarcastically, that "it would take 
him a lifetime to obtain one single demand elasticity." And he might 
be inclined to wonder: Is it worth while? Can we not get along, for 
practical purposes, by the usual short-cut methods, by graphical curve- 
fitting, or by making fair guesses combining our general experiences 
with the inference that appears "reasonable" from the particular data 
at hand? 

It would be arrogant and, indeed, unjustified to condemn all the 
short-cut methods and the practical guesswork which thousands of 
economists rely upon in their daily work as administrators or as ad- 
visers to those who run our economy. In fact, what we have attempted 
to show is that this kind of inference actually is based, implicitly and 
perhaps subconsciously, upon the same principles as those we have 
tried to describe with more precision in our analysis. We do, however, 
believe that economists might get more useful and reliable information 
(and also fewer spurious results) out of their data by adopting more 
clearly formulated probability models; and that such formulation might 
help in suggesting what data to look for and how to collect them. We 
should like to go further. We believe that, if economics is to establish 
itself as a reputable quantitative science, many economists will have 
to revise their ideas as to the level of statistical theory and technique 
and the amount of tedious work that will be required, even for modest 
projects of research. On the other side we must count the time and work 
that might be saved by eliminating a good deal of planless and futile 
juggling with figures. Also, it is hoped that expert statisticians, once 
they can be persuaded to take more interest in the particular statistical 
problems related to econometrics, will be able to work out, explicitly, 
many standard formulae and tables. One of the aims of the preceding 
analysis has been to indicate the kind of language that we believe the 
economist should adopt in order to make his problems clear to statis- 
ticians. No doubt the statisticians will then be able to do their job. 

In other quantitative sciences the discovery of "laws," even in highly 
specialized fields, has moved from the private study into huge scientific 
laboratories where scores of experts are engaged, not only in carrying 
out actual measurements, but also in working out, with painstaking 
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precision, the formulae to be tested and the plans for the crucial experi- 
ments to be made. Should we expect less in economic research, if its 
results are to be the basis for economic policy upon which might depend 
billions of dollars of national income and the general economic welfare 
of millions of people? 
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