In vivo imaging of phenotype change in muscle.

Skeletal muscle consists of a variety of specialised fibres, which allow muscles to carry out many different functional tasks.  The composition of different fibre types is important for the physiological properties of the muscle in response to a changing environment. The fibres are plastic and can change properties in response to variation in neural signal, loading condition or hormonal signals. The alteration can change the metabolic profile, size and other properties of the muscles. However, it is uncertain how a change in the environment affects different fibre types, and how this again contributes to the overall change in the muscle.

The ability to identify and separate different cell types is important for a wide range of biological and medical studies.  This is often very challenging as it relies on limited knowledge of the morphology and specific surface markers on the cell. However recently a new technique known as molecular beacons was developed, which targets specific mRNA transcripts with a fluorescent oligonucleotide making it possible to identify and investigate a cell population based on its gene expression.

 

In this project, the candidate will combine our group's expertise with in vivo imaging on living animals and molecular beacons to target key transcripts of the fibre over time in order to answer central questions on how the fibres change phenotype over time in different settings such as exercise or disease induced muscle wasting.  The in vivo results will be validated with molecular techniques.

 

Some of the methods you will learn: microscopy, in vivo imaging, histology, real time qPCR, SDS-PAGE and Western blotting.

 

The project will be performed at the Section of Physiology and Cell Biology in the laboratory of Professor Kristian Gundersen. The candidate will be supervised jointly by Mads Bengtsen, Kenth-Arne Hansson and Kristian Gundersen.

 

If any questions, please contact Mads Bengtsen (mads.bengtsen@ibv.uio.no  / Kristine Bonnevies hus room 2611).

 

 

 

 

 

Published Mar. 22, 2018 10:27 AM - Last modified Apr. 19, 2018 8:14 AM

Supervisor(s)

Scope (credits)

60