This course is discontinued

FYS9410 – Computational physics II

Course content

This is an advanced course on computational physics with an emphasis on quantum mechanical systems with many interacting particles. The applications and the computational methods are relevant for research problems in such diverse areas as nuclear, atomic, molecular and solid-state physics, chemistry and materials science.
A theoretical understanding of the behavior of quantum-mechanical many-body systems - that is, systems containing many interacting particles - is a considerable challenge in that no exact solution can be found; instead, reliable methods are needed for approximate but accurate simulations of such systems on modern computers. New insights and a better understanding of complicated quantum mechanical systems can only be obtained via large-scale simulations. The capability to study such systems is of high relevance for both fundamental research and industrial and technological advances.

The aim of this course is to present applications of, through various computational projects, some of the most widely used many-body methods with pertinent algorithms and high-performance computing topics such as advanced parallelization techniques and object orientation.
The methods and algorithms that will be studied may vary from year to year depending on the interests of the participants, but the main focus will be on systems from computational material science, solid-state physics, atomic and molecular physics, nuclear physics and quantum chemistry. The most relevant algorithms and methods are microscopic mean-field theories (Hartree-Fock and Kohn-Sham theories and density functional theories), large-scale diagonalization methods, coupled-cluster theory, and quantum Monte Carlo like Variational Monte Carlo and Diffusion Monte Carlo approaches. Methods to study phase transitions for both fermionic and bosonic systems can also be addressed.

Learning outcome

The course introduces a variety of central algorithms and methods for professional studies of quantum mechanical systems, with relevance for several problems in physics, materials science and quantum chemistry. The course is project based and through the various projects, normally two, the participants will be exposed to fundamental research problems in these fields, with the aim to reproduce state of the art scientific results. The students will learn to develop and structure large codes for studying these systems, get aquainted with supercomputing facilities and learn to handle large scientific projects. A good scientific and ethical conduct is emphasized throughout the course.

The course is also a continuation of FYS3150 - Computational physics, and it will give a further treatment of several of the numerical methods given there.

Admission

PhD candidates from the University of Oslo should apply for classes and register for examinations through Studentweb.

If a course has limited intake capacity, priority will be given to PhD candidates who follow an individual education plan where this particular course is included. Some national researchers’ schools may have specific rules for ranking applicants for courses with limited intake capacity.

PhD candidates who have been admitted to another higher education institution must apply for a position as a visiting student within a given deadline.

Prerequisites

Recommended previous knowledge

FYS3150 – Computational physics

Overlapping courses

10 credits with FYS4410 – Computational physics II (discontinued)

Teaching

The course is given in the spring term and contains 4 hours of lectures per week. The course also contains compulsory laboratory work and project work solved by using computers. Students will also be required to read at least to scientific articles to be agreed upon.

Examination

1-2 written assignments. Final oral examination based on the assignments.

Grading scale

Grades are awarded on a pass/fail scale. Read more about the grading system.

Facts about this course

Credits

10

Level

PhD

Teaching

Last teaching semester: spring 2009.

Examination

Last exam semester: spring 2009.

Teaching language

Norwegian (English on request)