Schedule, syllabus and examination date

Choose semester

Course content

The aim of the course is to give an introduction to the theory of representation. The chief emphasis will be on the three areas finite groups, compact Lie groups and complex Lie algebras. Feasible objectives in the three areas are respectively Frobenius reciprocity, Peter-Weyl theorem/Weyl character formula, and Cartan’s classification of simple, complex Lie algebras/theory of highest weight.

There will emphasis on concrete examples like the classical groups, the five exceptional ones and in the finite case the symmetric groups. The course will include a glimpse of the applications in physics.

Learning outcome

The course gives an introduction to the theory of representation of finite groups, compact Lie groups and complex Lie algebras.

Admission

Students who are admitted to study programmes at UiO must each semester register which courses and exams they wish to sign up for in Studentweb.

If you are not already enrolled as a student at UiO, please see our information about admission requirements and procedures.

Prerequisites

Recommended previous knowledge

MAT2200 - Groups, Rings and Fields, MAT2400 - Real Analysis and MAT4520 - Manifolds.

Overlapping courses

10 credits overlap with MAT9270 - Representation Theory

For information about the potential partial overlap with other courses, contact the Department.

Teaching

4 hours of lectures/exercises per week.

Examination

One compulsory assignment needs to be passed within given deadlines to be allowed to take the final exam. Depending on the number of students, the exam will be either oral or written.
What form the exam will take will be announced by the teaching staff within February/October 15th.

Final mark is given based 100% on the examination at the end of the semester.

Rules for compulsory assignments at the Department of Mathematics.

Examination support material

No examination support material is allowed.

Language of examination

Subjects taught in English will only offer the exam paper in English.

You may write your examination paper in Norwegian, Swedish, Danish or English.

Grading scale

Grades are awarded on a scale from A to F, where A is the best grade and F is a fail. Read more about the grading system.

Explanations and appeals

Resit an examination

This course offers both postponed and resit of examination. Read more:

Withdrawal from an examination

It is possible to take the exam up to 3 times. If you withdraw from the exam after the deadline or during the exam, this will be counted as an examination attempt.

Special examination arrangements

Application form, deadline and requirements for special examination arrangements.

Evaluation

The course is subject to continuous evaluation. At regular intervals we also ask students to participate in a more comprehensive evaluation.

Facts about this course

Credits

10

Level

Master

Teaching

Autumn 2017

Autumn 2015

Autumn 2014

Autumn 2013

Autumn 2012

Taught according to demand and resources. If you want to attend the course, please send an e-mail to studieinfo@math.uio.no.

The course will be given with fewer lectures than normal in the Autumn 2014.

Examination

Autumn 2017

Autumn 2015

Autumn 2014

Autumn 2013

Autumn 2012

According to demand and resources.

Teaching language

English

Taught according to demand and resources.