STK9021 – Applied Bayesian Analysis

Schedule, syllabus and examination date

Choose semester

Course content

Combining various data sources and other types of information is becoming increasingly important in various types of analyses. Certain classes of Bayesian hierarchical models have shown to be particularly useful in such contexts. Bayesian approaches are strongly connected to statistical computational methods, and in particular to Monte Carlo techniques. This course considers the foundation of Bayesian analysis, how to use Bayesian methods in practice, and computational methods for hierarchical models.

Learning outcome

After completing the course you:

  • can handle the general Bayesian principles and the foundation for Bayesian analysis;
  • have knowledge about how a priori insight can be formulated as a priori distributions through Bayes’ formula;
  • know of the relations between Bayesian and non-Bayesian methods, including empirical Bayes methods;
  • have knowledge about the principles behind hierarchical models;
  • can handle various computational methods for simple and hierarchical models (including asymptotic considerations, Monte Carlo methods and Markov Chain Monte Carlo methods);
  • are able to use the computational methods taught in the course on real problems and data, and also interpret the results;
  • will be able to present, on a scientific level, a short thesis on a chosen topic of relevance, selected in collaboration with the lecturer.

Admission to the course

PhD candidates from the University of Oslo should apply for classes and register for examinations through Studentweb.

If a course has limited intake capacity, priority will be given to PhD candidates who follow an individual education plan where this particular course is included. Some national researchers’ schools may have specific rules for ranking applicants for courses with limited intake capacity.

PhD candidates who have been admitted to another higher education institution must apply for a position as a visiting student within a given deadline.

Overlapping courses

Teaching

3 hours of lectures/exercises per week.

The course may be taught in Norwegian if the lecturer and all students at the first lecture agree to it.

Upon the attendance of three or fewer students, the lecturer may, in conjunction with the Head of Teaching, change the course to self-study with supervision.

Examination

1 mandatory assignment.

Final oral or written examination. The form of examination will be announced by the teaching staff by 15 October/15 March for the autumn semester and the spring semester respectively.

In addition, each PhD candidate is expected to give an oral presentation on a topic of relevance chosen in cooperation with the lecturer. The presentation has to be approved by the lecturer for the student to be admitted to the final exam.

Examination support material

Written examination: Approved calculators are allowed. Information about approved calculators (Norwegian only)

Oral examination: No examination support material is allowed.

Language of examination

Subjects taught in English will only offer the exam paper in English. You may write your examination paper in Norwegian, Swedish, Danish or English.

Grading scale

Grades are awarded on a pass/fail scale. Read more about the grading system.

Resit an examination

This course offers both postponed and resit of examination. Read more:

Special examination arrangements, use of sources, explanations and appeals

See more about examinations at UiO

Last updated from FS (Common Student System) Dec. 8, 2019 9:19:13 AM

Facts about this course

Credits
10
Level
PhD
Teaching
Spring and autumn

Taught according to demand and resources. Contact studieinfo@math.uio.no if you are interested in this course.

Examination
Autumn
Teaching language
English