Schedule, syllabus and examination date

Choose semester

Changes in the course due to coronavirus

Autumn 2020 we plan for teaching and examinations to be conducted as described in the course description and on semester pages. However, changes may occur due to the corona situation. You will receive notifications about any changes at the semester page and/or in Canvas.

Spring 2020: Teaching and examinations was digitilized. See changes and common guidelines for exams at the MN faculty spring 2020.

Course content

This course is an introduction to topological spaces. It deals with constructions like subspaces, product spaces, and quotient spaces, and properties like compactness and connectedness. The course concludes with an introduction to fundamental groups and covering spaces.

Learning outcome

After completing the course you

  • can work with sets and functions, images and preimages, and you can distinguish between finite, countable, and uncountable sets

  • know how the topology on a space is determined by the collection of open sets, by the collection of closed sets, or by a basis of neighbourhoods at each point, and you know what it means for a function to be continuous

  • know the definition and basic properties of connected spaces, path connected spaces, compact spaces, and locally compact spaces

  • know what it means for a metric space to be complete, and you can characterize compact metric spaces

  • are familiar with the Urysohn lemma and the Tietze extension theorem, and you can characterize metrizable spaces

  • are familiar with the construction of the fundamental group of a topological space and applications to covering spaces and homotopy theory.

Admission to the course

Students who are admitted to study programmes at UiO must each semester register which courses and exams they wish to sign up for in Studentweb.

Special admission requirements

In addition to fulfilling the Higher Education Entrance Qualification, applicants have to meet the following special admission requirements:

  • Mathematics R1 (or Mathematics S1 and S2) + R2

And in addition one of these:

  • Physics (1+2)

  • Chemistry (1+2)

  • Biology (1+2)

  • Information technology (1+2)

  • Geosciences (1+2)

  • Technology and theories of research (1+2)

The special admission requirements may also be covered by equivalent studies from Norwegian upper secondary school or by other equivalent studies (in Norwegian).

Overlapping courses

  • 10 credits overlap with MAT4500 – Topology.
  • 10 credits overlap with MA245.
  • 9 credits overlap with MA232.
  • 9 credits overlap with MA232.
  • 9 credits overlap with MA144.
  • 6 credits overlap with MA140.

Teaching

6 hours of lectures/exercises per week throughout the semester.

The course may be taught in Norwegian if the lecturer and all students at the first lecture agree to it.

Examination

Final written exam 4 hours which counts 100 % towards the final grade. 

This course has 1 mandatory assignment that must be approved before you can sit the final exam.

It will also be counted as one of the three attempts to sit the exam for this course, if you sit the exam for one of the following courses: MAT4500 – Topology

Examination support material

No examination support material is allowed.

Language of examination

Courses taught in English will only offer the exam paper in English. You may write your examination paper in Norwegian, Swedish, Danish or English.

Grading scale

Grades are awarded on a scale from A to F, where A is the best grade and F is a fail. Read more about the grading system.

Resit an examination

This course offers both postponed and resit of examination. Read more:

Special examination arrangements, use of sources, explanations and appeals

See more about examinations at UiO

Last updated from FS (Common Student System) Aug. 12, 2020 11:19:22 AM

Facts about this course

Credits
10
Level
Bachelor
Teaching
Autumn
Examination
Autumn
Teaching language
English