Schedule, syllabus and examination date

Choose semester

Course content

The aim of the course is to give an introduction to the theory of representation. The chief emphasis will be on the three areas: finite groups, compact Lie groups and complex Lie algebras. Feasible objectives in the three areas are respectively Frobenius reciprocity, Peter-Weyl theorem/Weyl character formula, and Cartan’s classification of simple, complex Lie algebras/theory of highest weight.

There will emphasis on concrete examples like the classical groups, the five exceptional ones and in the finite case the symmetric groups. The course will include a glimpse of the applications in physics.

Learning outcome

The course gives an introduction to the theory of representation of finite groups, compact Lie groups and complex Lie algebras.

Admission

Students who are admitted to study programmes at UiO must each semester register which courses and exams they wish to sign up for in Studentweb.

If you are not already enrolled as a student at UiO, please see our information about admission requirements and procedures.

Prerequisites

Recommended previous knowledge

MAT2200 – Groups, Rings and Fields, MAT2400 – Real Analysis and MAT4520 – Manifolds.

Overlapping courses

10 credits overlap with MAT9270 – Representation Theory

*The information about overlaps for discontinued courses may not be complete. If you have questions, please contact the Department. 

Teaching

4 hours of lectures/exercises per week.

Upon the attendance of three or fewer students, the lecturer may, in conjunction with the Head of Teaching, change the course to self-study with supervision.

Examination

1 mandatory assignment.

Final oral or written examination. The form of examination will be announced by the teaching staff by 15 October/15 March for the autumn semester and the spring semester respectively.

Examination support material

No examination support material is allowed.

Language of examination

Subjects taught in English will only offer the exam paper in English.

You may write your examination paper in Norwegian, Swedish, Danish or English.

Grading scale

Grades are awarded on a scale from A to F, where A is the best grade and F is a fail. Read more about the grading system.

Explanations and appeals

Resit an examination

Students who can document a valid reason for absence from the regular examination are offered a postponed examination at the beginning of the next semester.

Re-scheduled examinations are not offered to students who withdraw during, or did not pass the original examination.

Withdrawal from an examination

It is possible to take the exam up to 3 times. If you withdraw from the exam after the deadline or during the exam, this will be counted as an examination attempt.

Special examination arrangements

Application form, deadline and requirements for special examination arrangements.

Evaluation

The course is subject to continuous evaluation. At regular intervals we also ask students to participate in a more comprehensive evaluation.

Facts about this course

Credits

10

Level

Master

Teaching

Taught according to demand and resources. Contact studieinfo@math.uio.no if you are interested in this course.

Examination

The same semester as taught.

Teaching language

English

The course may be taught in Norwegian if the lecturer and all students at the first lecture agree to it.