FYS3120 – Classical Mechanics and Electrodynamics

Changes in the course due to coronavirus

Autumn 2020 we plan for teaching and examinations to be conducted as described in the course description and on semester pages. However, changes may occur due to the corona situation. You will receive notifications about any changes at the semester page and/or in Canvas.

See general guidelines for examination at the MN Faculty autumn 2020.

Course content

This course gives an introduction to analytical mechanics with an emphasis on Lagrange-Hamilton formalism and the action concept. Further, the course contains a thorough introduction to Einstein’s special relativity using four-vector formalism. This is used to give a covariant (independent of reference frame) description of mechanics and electromagnetism, including Maxwell’s equations.

Learning outcome

After completing this course the student is expected to:

  • understand the fundamental concepts of analytical mechanics such as generalised coordinates and momenta, the Lagrange and Hamilton functions, the action, cyclic coordinates and the relation between symmetries and conserved quantities, as well as the use of Poisson brackets
  • be able to use the Lagrange and Hamilton equations to solve complex mechanical problems, and to use phase space based arguments to achieve a qualitative understanding of the existing solutions, as well as to apply variational calculus to more general problems
  • understand the fundamental concepts of special relativity and their physical consequences, such as the Lorentz transformation, invariant quantities, the metric, and four-vectors and more general tensors, as well as their use in covariant formulations of physical laws
  • be able to perform calculations using relativistic mechanics and conservation laws, including Newton’s second law on covariant form
  • be able to use Maxwell’s equations in calculations featuring: both free and stationary electromagnetic waves, polarisation, problems with stationary sources, use of the multipole expansion, and time-dependent sources with electromagnetic radiation, including radiation from a dipole
  • have a basic understanding of the field formulation of the Lagrange-Hamilton formalism

Admission to the course

Students who are admitted to study programmes at UiO must each semester register which courses and exams they wish to sign up for in Studentweb.

If you are not already enrolled as a student at UiO, please see our information about admission requirements and procedures.

Special admission requirements

In addition to fulfilling the Higher Education Entrance Qualification, applicants have to meet the following special admission requirements:

  • Mathematics R1 (or Mathematics S1 and S2) + R2

And in addition one of these:

  • Physics (1+2)
  • Chemistry (1+2)
  • Biology (1+2)
  • Information technology (1+2)
  • Geosciences (1+2)
  • Technology and theories of research (1+2)

The special admission requirements may also be covered by equivalent studies from Norwegian upper secondary school or by other equivalent studies (in Norwegian).

Overlapping courses

Teaching

The course runs over a whole semester with six hours of teaching per week (four hours of lectures and two hours of problem solving classes).

The course includes twelve compulsory problem sets. A minimum of six of these have to be handed in and approved in order to be admitted to the final exam.

Regulations for mandatory assignments can be found here.

Examination

To be eligible for the final exam, minimum six out of twelve problem sets must be approved.

An exam in the form of a written home assignment, weighted 20%.

A final written exam (4 hours), weighted 80%.

Examination support material

  • Approved calculator
  • Rottman: "Matematisk formelsamling"
  • Øgrim and Lian or Angell and Lian: "Fysiske størrelser og enheter"
  • Compendium with formulas for the course

Language of examination

You may write your examination paper in Norwegian, Swedish, Danish or English.

Grading scale

Grades are awarded on a scale from A to F, where A is the best grade and F is a fail. Read more about the grading system.

Resit an examination

Students who can document a valid reason for absence from the regular examination are offered a postponed examination at the beginning of the next semester.

Re-scheduled examinations are not offered to students who withdraw during, or did not pass the original examination.

Special examination arrangements, use of sources, explanations and appeals

See more about examinations at UiO

Last updated from FS (Common Student System) Oct. 1, 2020 6:15:21 PM

Facts about this course

Credits
10
Level
Bachelor
Teaching
Spring
Examination
Spring
Teaching language
Norwegian (English on request)