Timeplan, pensum og eksamensdato

Velg semester

Kort om emnet

Emnet er en fortsettelse av MAT4410, der funksjonalanalysen utvikles i et bredere perspektiv. Følgende temaer blir behandlet: en introduksjon til lokalt konvekse rom (med bl.a. Hahn-Banachs separasjonsteorem, svak og svak*-topologier, Alaoglus teorem, Krein-Milmans teorem); mer om operatorer på Hilbertrom (med bl.a. polardekomposisjon, spektralteoremet for normale kompakte operatorer, indeksteori for Fredholmoperatorer, traseklasseoperatorer, Hilbert-Schmidt-operatorer); Gelfandteorien for kommutative Banachalgebraer og kommutative C*-algebraer med anvendelser til spektralteorien for normale operatorer; en introduksjon til teorien for ubegrensede operatorer på et Hilbertrom.

Hva lærer du?

Emnet kombinerer ideer og metoder fra forskjellige grener av matematikken. Emnet er primært tiltenkt studenter som vil spesialisere seg i retningen operatoralgebraer, men innholdet vil også være nyttig for studenter med interesse for andre retninger i analyse.

Opptak og adgangsregulering

Studenter må hvert semester søke og få plass på undervisningen og melde seg til eksamen i Studentweb.

Dersom du ikke allerede har studieplass ved UiO, kan du søke opptak til våre studieprogrammer, eller søke om å bli enkeltemnestudent.

Overlappende emner

*Informasjon om overlapp mot nedlagte emner kan være ufullstendig. Ta kontakt med instituttet ved spørsmål. 

Undervisning

4 timer forelesning/regneøvelse hver uke hele semesteret.

Ved fremmøte av tre eller færre studenter kan faglærer, sammen med undervisningsleder, gjøre emnet om til selvstudiumsemne med veiledning.

Eksamen

1 obligatorisk oppgave.

Muntlig eksamen.

Hjelpemidler

Ingen hjelpemidler er tillatt.

Eksamensspråk

Dersom emnet undervises på engelsk vil det bare tilbys eksamensoppgavetekst på engelsk.

Du kan besvare eksamen på norsk, svensk, dansk eller engelsk.

Karakterskala

Emnet bruker karakterskala fra A til F, der A er beste karakter og F er stryk. Les mer om karakterskalaen.

Begrunnelse og klage

Adgang til ny eller utsatt eksamen

Studenter som dokumenterer gyldig fravær fra ordinær eksamen, kan ta utsatt eksamen i starten av neste semester.

Det tilbys ikke ny eksamen til studenter som har trukket seg under ordinær eksamen, eller som ikke har bestått.

Trekk fra eksamen

Det er mulig å ta eksamen i emnet inntil tre ganger. Dersom du trekker deg fra eksamen etter fristen eller under eksamen, bruker du et eksamensforsøk.

Tilrettelagt eksamen

Søknadskjema, krav og frist for tilrettelagt eksamen.

Evaluering av emnet

Vi gjennomfører fortløpende evaluering av emnet, og med jevne mellomrom ber vi studentene delta i en mer omfattende evaluering.

Fakta om emnet

Studiepoeng

10

Nivå

Master

Undervisning

Vår 2020

Når behov og ressurser tilsier det. Kontakt studieinfo@math.uio.no hvis du er interessert i emnet.

Eksamen

Vår 2020

Samme semester som undervisning. 

Undervisningsspråk

Engelsk

Emnet kan undervises på norsk dersom foreleser og alle studenter på første forelesning ønsker det.