STK-IN4300 – Statistiske læringsmetoder i Data Science

Timeplan, pensum og eksamensdato

Velg semester

Kort om emnet

Emnet fokuserer på metoder i moderne dataanalyse både fra et praktisk og fra et teoretisk rammeverk. Slike metoder, kalt maskinlæring eller statistisk læring, gjør færre antagelser enn klassiske metoder. Følgelig spiller data en større rolle i identifisering av strukturer og sammenhenger. Emnet starter med klassiske metoder og dekker videre mer avanserte prosedyrer, spesifikt designet for å takle moderne datautfordringer som økende kompleksitet og store mengder av informasjon (stordatasituasjoner).

Hva lærer du?

Etter å ha fullført emnet vil du:

  • forstå nøkkelbegreper for god analyse av data
  • forstå de teoretiske aspekter på metoder innen maskin/statistisk læring
  • kjenne til en rekke ulike metoder for dataanalyse, inkludert straffet likelihood, basis ekspansjoner, nevrale nettverk, boosting og ensemble metoder og Gaussiske prosesser innen maskinlæring
  • kjenne til prosedyrer for å tilpasse slike metoder til data, inkludert (stokastiske) gradientmetoder og back-propagation
  • kunne evaluere styrker og svakheter ved disse metodene og velge mellom dem i praksis

Opptak til emnet

Studenter må hvert semester søke og få plass på undervisningen og melde seg til eksamen i Studentweb.

Studenter tatt opp til andre masterprogrammer kan, etter søknad, få adgang til emnet hvis dette er klarert med eget program.

Dersom du ikke allerede har studieplass ved UiO, kan du søke om opptak til våre studieprogrammer, eller søke om å bli enkeltemnestudent.

For å få studieplass på dette emnet må du være tatt opp på et masterprogram ved Matematisk institutt.

Overlappende emner

Undervisning

4 timer forelesning/regneøvelser hver uke hele semesteret.

Emnet kan undervises på norsk dersom foreleser og alle studenter på første forelesning ønsker det.

Eksamen

Avsluttende skriftlig eksamen eller avsluttende muntlig eksamen, som teller 100 % ved sensurering.

Eksamensform kunngjøres av faglærer senest 15. oktober/15. mars for henholdsvis høstsemesteret og vårsemesteret.

Dette emnet har 2 obligatoriske øvelser som må være godkjent før avsluttende eksamen.

Som eksamensforsøk i dette emnet teller også forsøk i følgende tilsvarende emner: STK-IN9300 – Statiske læringsmetoder i Data Science

Hjelpemidler til eksamen

Ingen hjelpemidler er tillatt.

Eksamensspråk

Dersom emnet undervises på engelsk vil det bare tilbys eksamensoppgavetekst på engelsk. Du kan besvare eksamen på norsk, svensk, dansk eller engelsk.

Karakterskala

Emnet bruker karakterskala fra A til F, der A er beste karakter og F er stryk. Les mer om karakterskalaen

Adgang til ny eller utsatt eksamen

Dette emnet tilbyr både utsatt og ny eksamen. Les mer:

Tilrettelagt eksamen, kildebruk, begrunnelse og klage

Se mer om eksamen ved UiO

Sist hentet fra Felles Studentsystem (FS) 28. sep. 2022 12:30:40

Fakta om emnet

Studiepoeng
10
Nivå
Master
Undervisning
Høst
Eksamen
Høst
Undervisningsspråk
Engelsk