FYS-STK3155 – Anvendt dataanalyse og maskinlæring

Timeplan, pensum og eksamensdato

Velg semester

Kort om emnet

Emnet gir en innføring i en rekke sentrale algoritmer og metoder, som er viktige for studier av statistisk dataanalyse og maskinlæring. Emnet er prosjektbasert, og gjennom de ulike prosjektene introduseres studentene for grunnleggende forskningsproblemer innen disse feltene, med sikte på å gjengi moderne vitenskapelige resultater. Studentene lærer å utvikle og strukturere større koder for å studere disse systemene, bli kjent med datafasiliteter og lærer hvordan håndtere store vitenskapelige prosjekter. God vitenskapelig og etisk oppførsel vektlegges gjennom hele emnet.

Hva lærer du?

Etter å ha fullført emnet, har du:

  • en grunnleggende forståelse av Bayesisk statistikk og kjente sannsynsfordelinger.
  • en forståelse av sentrale algoritmer som brukes i statistisk data-analyse og maskinlæring, med hovedvekt på leda læring.
  • kunnskap om Monte Carlo-metoder, Markov-kjeder, Gibbs samplere, data-optimering og deres anvendelser.
  • en forståelse av lineær og logistisk regresjon.
  • en forståelse av sentral optimerings algoritmer som stochastic gradient descent.
  • kunnskap om nevrale nettverk og djup lærings algoritmer for leda og uleda læring.
  • erfaring i å jobbe med store numeriske prosjekter.
  • kjennskap til andre maskinlæringsalgoritmer, slik som support vector maskiner, beslutningstrær og ensemble metoder som random forests, bagging og boosting.

Opptak til emnet

Studenter må hvert semester søke og få plass på undervisningen og melde seg til eksamen i Studentweb.

Spesielle opptakskrav

I tillegg til generell studiekompetanse eller realkompetanse må du dekke spesielle opptakskrav.

Du må ha:

  • Matematikk R1 (eller Matematikk S1 og S2) + R2

Og en av disse:

  • Fysikk (1+2)
  • Kjemi (1+2)
  • Biologi (1+2)
  • Informasjonsteknologi (1+2)
  • Geofag (1+2)
  • Teknologi og forskningslære (1+2)

De spesielle opptakskravene kan også dekkes med fag fra videregående opplæring før Kunnskapsløftet, eller på andre måter.

Grunnleggende kunnskap om programmering og numerikk:

Ett eller flere av følgende emner:

Overlappende emner

Undervisning

Undervisningen går over et helt semester med følgende tilbud: 

  • 4 timer forelesninger per uke 
  • 4 timer datalab for arbeid med numeriske prosjekter per uke i ca. 15 uker
  • Ukesoppgaver

Eksamen

  • Hjemmeeksamener i form av tre prosjektoppgaver, som hver teller 1/3 av avsluttende karakter.  

Ved oppgaveskriving må du gjøre deg kjent med reglene for kildebruk og referanser. Ved brudd på reglene kan du bli mistenkt for forsøk på fusk.

Som eksamensforsøk i dette emnet teller også forsøk i følgende tilsvarende emner: FYS-STK4155 – Anvendt dataanalyse og maskinlæring

Eksamensspråk

Dersom emnet undervises på engelsk vil det bare tilbys eksamensoppgavetekst på engelsk. Du kan besvare eksamen på norsk, svensk, dansk eller engelsk.

Karakterskala

Emnet bruker karakterskala fra A til F, der A er beste karakter og F er stryk. Les mer om karakterskalaen

Adgang til ny eller utsatt eksamen

Studenter som dokumenterer gyldig fravær fra ordinær eksamen, kan ta utsatt eksamen i starten av neste semester.

Det tilbys ikke ny eksamen til studenter som har trukket seg under ordinær eksamen, eller som ikke har bestått.

Tilrettelagt eksamen, kildebruk, begrunnelse og klage

Se mer om eksamen ved UiO

Sist hentet fra Felles Studentsystem (FS) 21. mai 2022 07:11:51

Fakta om emnet

Studiepoeng
10
Nivå
Bachelor
Undervisning
Høst
Eksamen
Høst
Undervisningsspråk
Norsk (engelsk på forespørsel)